M2 SOAC : Fiche de stage de recherche en laboratoire

Titre du stage: Observation des nuages d'eau surfondue avec EarthCARE au-dessus du Dôme C, Antarctique

Nom et statut du (des) responsable (s) de stage :

RICAUD Philippe (DR CNRS)

Coordonnées (téléphone et email) du (des) responsable (s) de stage :

06 75 93 23 18 & philippe.ricaud@meteo.fr

Sujet du stage:

Les nuages jouent un rôle central dans l'évolution du climat terrestre, leur impact radiatif dépendant fortement de la phase de l'eau — liquide versus glace. Au-dessus de l'Antarctique, les nuages d'eau surfondue (Supercooled Liquid Water (SLW), en anglais), qui persistent à des températures inférieures à 0 °C, restent difficiles à observer et sont souvent mal représentés dans les modèles climatiques et les modèles de prévision numérique. À Dôme C, station Concordia (75°06′S, 123°21′E, 3 233 m d'altitude) sur le plateau Antarctique oriental, des observations récentes (Ricaud et al., 2024) ont révélé une relation logarithmique entre le contenu intégré en eau liquide (Liquid Water Path (LWP), en anglais) et le forçage radiatif des nuages (Cloud Radiative Forcing (CRF), en anglais) SLW durant l'été austral (décembre 2018–2021). Les réanalyses météorologiques ERA5 du Centre Européen reproduisent cette relation et demeurent dans son domaine de validité (Ricaud, 2025). Cependant, ERA5 sous-estime le maximum de SLW CRF d'environ 15 W m⁻² (~20 %), principalement en raison de biais dans la composante infrarouge (environ deux tiers du déficit) et, dans une moindre mesure, dans la composante solaire (environ un tiers). L'objectif du stage est d'exploiter les prochaines observations de la mission spatiale EarthCARE au-dessus du Dôme C pour évaluer leur capacité à détecter les nuages SLW en été, valider les mesures de LWP, et éventuellement caractériser leur variabilité diurne. Des comparaisons avec les observations effectuées au Dôme C durant l'été décembre 2025-janvier 2026 seront entreprises ainsi qu'avec les réanalyses ERA5 du Centre Européen.

EarthCARE (Earth Clouds, Aerosols and Radiation Explorer) est un satellite d'observation de l'atmosphère terrestre faisant partie du programme Living Planet de l'ESA et développé en coopération avec l'agence spatiale japonaise JAXA. EarthCARE est constitué de quatre instruments : 1) un lidar atmosphérique à haute résolution spectrale (ATLID - ATmospheric LIDar) opérant à 355 nm qui fournit un profil vertical des aérosols et des nuages peu épais ; 2) un radar (CPR - Cloud Profiling Radar) opérant à 94 GHz qui produit un profil vertical des dimensions des nuages ; 3) un spectromètre imageur (MSI - Multi-Spectral Imager) à 7 canaux ; et 4) un radiomètre à large bande (BBR - Broad-Band Radiometer) qui effectue des mesures de la radiance et des flux au sommet de la couche atmosphérique. On se focalisera dans un premier temps sur les observations provenant des instruments lidar et radar de EarthCARE permettant d'accéder à la distribution verticale des nuages SLW, leur teneur en eau liquide, et la température au sein du nuage. On pourra les comparer aux observations effectuée au Dôme C avec le radiomètre micro-onde HAMSTRAD (profils verticaux de température et d'humidité, et eau liquide intégrée) et au lidar aérosol permettant de caractériser la nature des nuages (SLW vs glace). Dans un deuxième temps, on utilisera les réanalyses ERA5 du Centre Européen et on évaluera la cohérence des différents jeux de données pour caractériser les nuages SLW.

La personne retenue utilisera les moyens et outils informatiques du CNRM. Elle pourra interagir avec les différents membres de l'équipe ayant une compétence dans les observations spatiales ainsi qu'avec des chercheurs étrangers (principalement en Italie) impliqués dans la thématique et collaborant au projet HAMSTRAD.

Références

Ricaud, P., Del Guasta, M., Lupi, A., Roehrig, R., Bazile, E., Durand, P., Attié, J.-L., Nicosia, A., and Grigioni, P.: Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing, Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024, 2024.

Ricaud, P.: ERA5 deficit in supercooled liquid water cloud radiative forcing at Dome C, Antarctica, Quarterly Journal of the Royal Meteorological Society, accepted, QJ-25-0111, 2025.