## M2 SOAC : Fiche de stage de recherche en laboratoire

Laboratoire: CNRM et LAERO

<u>Titre du stage</u> : Etude des tempêtes observées pendant la campagne NAWDIC à l'aide de la modélisation

numérique

Nom et statut du (des) responsable (s) de stage : Didier Ricard (DR Météo-France), Florian Pantillon (CR CNRS), Thomas Lauwers (CR Météo-France)

<u>Coordonnées (téléphone et email) des responsables de stage : didier.ricard@meteo.fr florian.pantillon@cnrs.fr thomas.lauwers@meteo.fr</u>

## Sujet du stage:

Les tempêtes hivernales sont responsables de dégâts majeurs pouvant se compter en milliards d'euros en Europe occidentale. Si la trajectoire et l'intensité des tempêtes sont généralement bien comprises et anticipées à l'échelle synoptique, la prévision des vents extrêmes et des rafales de surface reste un défi. Leur formation dépend de processus à fine échelle tels que la convection profonde et peu profonde, la microphysique nuageuse, la turbulence et les interactions avec la surface. Ces processus ne sont pas bien caractérisés dans les tempêtes et ont principalement été étudiés à l'aide de simulations numériques alors que très peu d'observations sont disponibles et que leur représentation dans les modèles est sujette à de grandes incertitudes.

Les conditions de formation des vents forts dans les tempêtes seront observées pendant l'hiver 2025-26 dans le cadre de la campagne de mesures internationale NAWDIC (North Atlantic Waveguide, Dry Intrusion, and Downstream Impact Campaign; <a href="https://www.nawdic.kit.edu/">https://www.nawdic.kit.edu/</a>). Trois avions couvriront l'Atlantique Nord-Est en janvier-février 2026: l'avion allemand à long rayon d'action HALO du DLR (Deutsches Zentrum für Luft- und Raumfahrt) basé à Shannon (Irlande); l'avion français à moyen rayon d'action ATR42 du SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) également basé à Shannon; et l'avion allemand à court rayon d'action Cessna F406 du TUBS (Technische Universität Braunschweig) basé à Brest.

L'ATR42 du SAFIRE sera déployé avec une très grande charge utile comprenant à la fois des mesures de télédétection et des mesures in situ des propriétés des aérosols, des nuages et des précipitations. L'avion transportera les plateformes RALI (Radar-Lidar ; https://rali.aeris-data.fr/) et PMA (Plateforme de Mesures Aéroportées ; https://www.opgc.fr/DOI/10.25519/c47b-5t76/). Cette configuration permettra de documenter à la fois la dynamique et la microphysique nuageuse dans les tempêtes. La campagne aéroportée sera complétée par le déploiement en Bretagne d'instrumentation au sol pendant l'hiver 2025-26. Celle-ci inclura quatre radars nuages BASTA, un lidar vapeur d'eau et un lidar vent, deux radars précipitations MRR et deux disdromètres. La synergie instrumentale permettra d'acquérir un jeu de données unique avec des mesures de vent, de propriétés nuageuses et de propriétés de surface à l'arrivée du rail des dépressions atlantiques.

Le stage consistera d'abord à identifier des cas d'étude prometteurs de tempêtes observées pendant la campagne. Le choix se basera à la fois sur la dynamique des tempêtes et sur la disponibilité des observations aéroportées et au sol. Des simulations numériques seront ensuite réalisées avec le Code Communautaire Méso-NH pour un cas d'étude sélectionné à une résolution kilométrique. Elles seront réalisées sur un domaine suffisamment étendu pour inclure l'environnement synoptique de la tempête. Ces simulations seront confrontées à la première version (« quick looks ») des mesures issues de la plateforme de télédétection RALI et des lidar vent et vapeur d'eau. Elles permettront à la fois d'estimer la qualité des simulations et d'interpréter les mesures dans leur contexte dynamique. Des trajectoires seront utilisées dans les simulations pour identifier l'origine des masses d'air impliquées dans la génération des forts vent en surface. Des expériences de sensibilité à la résolution et à certaines paramétrisations physiques pourront également menées.

L'objectif du stage est de contribuer à mieux comprendre la formation des vents de surface dans les tempêtes par une première exploitation des mesures de la campagne NAWDIC. Une thèse dans la continuité du sujet sera proposée à l'issue du stage de recherche.