
Linux for beginner

A Linux little helper
to start with

SYMPHONIE

Sirocco, LEGOS, CNRS : 2021

Linux for beginner : little helper to start with SYMPHONIE 1

Content
1. Introduction to LINUX Environment...3

 1.1 The « root »...3
2. Opening a terminal...5
3. Some basic command principles in LINUX...5

 3.1 General definition of a command:..5
4. The tree structure :..6

 4.1 Where are we?...6
 4.2 How to know what is in the directories :..6
 4.3 How to move in the directories: relative path and absolute path..7

5. Practical use of the console shortcuts...11
 5.1 The Completion...11
 5.2 History, command recall and copy/paste with the mouse :...11
 5.3 The jokers :...12
 5.4 The Permissions :..13
 5.6 Handling of files and directories:..14
 5.7 Viewing and editing files :..15
 5.8 Text Editor and Co..16
 5.9 Finding a file: the find command..16
 5.10 Search for a string : the « grep » command ...16
 5.11 The redirection « > » (and “>>”) and the "pipe" « | »:..17
 5.12 File archiving and compression:...17
 5.13 Need help learning more about a command and its options?...18

6. Beyond the current Linux command..19
 6.1 suspend and resume an action :...19
 6.2 Remote connection...19
 6.3 See the running processes and how to stop a process:..19

7. Checklist of basic commands...20
8. Text editor in the terminal: VI..25

 8.1 The modes of Vi..25
 8.2 Basic commands...25
 8.3 Editing commands..25
 8.4 Find and Replace..26

Vim Commands Cheat Sheet..27
How to Exit..27
Editing a File..27
Inserting Text...27
Inserting a file..27
Deleting Text..27
Changing (or Replacing) Text..28
Substituting..28
Undo/Redo/Repeat...29
Screen movement commands..29
Marks...29
Searching...30
Selecting Text (Visual Mode)..30
How to Suspend...31

Linux for beginner : little helper to start with SYMPHONIE 2

Linux to start with SYMPHONIE

The purpose of this document is to give some basic ideas about the Linux work
environment no matter what distribution you are considering (Ubuntu, Debian,
OpenSuse etc.). Without pretending to be exhaustive (far from it) this document
should allow you to go from novice to advanced enough to understand the commands
you will need when using a computational code like SYMPHONIE. For the exercises and
examples, it is assumed that you already have the TP_LINUX files on your account.

We will consider as solved the problems of installation of distribution and account.
That is to say that you have a working Linux machine and you have a login and a
password. N.B. often under Linux it does not appear of character " * " when
one types the password, it is an additional safety which prevents to know
how many letter your password is composed for an indiscreet person.

Before getting into the practical aspects that concern us, it is interesting to know a
little about the architecture of the file system and directories under Linux.

1. Introduction to LINUX Environment
Under Linux, file management is not like under Windows. The separation of the various
disks, USB keys, CD drive, etc... is done according to a single tree structure. Where
under Windows the files contained in different “disks”, would be differentiated with
respect to a disk identifier (C:\ or D:\ etc.), under Linux any file is visible from a "zero
level" which is called the root.

1.1 The « root »

There is no folder higher than " / ", that means that there is no folder that contains the
folder " / ". When you are at the root, you can't go backwards because... you are
already at the very beginning. (Windows equivalence: even if it is not totally true, you
can see / as equivalent to C:\)

Unlike a Windows system, in the GNU/LINUX system the files that manage it are
distributed in a tree where each of the files has a well defined place:

Path Description
/ name of the root of the system tree
/bin containing the executable necessary for the operation of the system
/dev containing the special files corresponding to the device drivers
/usr/bin containing the executable of the installed programs
/usr/sbin containing commands available only to the super user (root)
/sbin containing commands available only to the super user but which are

essential to the functioning, especially during the boot, of the system
/boot containing the kernel(s) and other files necessary to boot the system
/etc containing the configuration files of most of the system programs, servers

and sometimes the default configuration files of the users' programs.
/var containing files used by different system programs, for example it

contains logs, sockets etc.
/usr/lib containing dynamic or static libraries available on the system. This is the

default search directory for the linker.
/usr/lib/X11 containing files specific to the graphical server (Xorg)
/usr/include containing headers files for C programming (standard C library, API of

Linux for beginner : little helper to start with SYMPHONIE 3

../../../../../C:/

third party libraries, headers usable for the Linux kernel like V4L (video for
linux)).

/usr/local which can contain a kind of new tree with a bin, etc, lib for applications
added after the installation of the system.

/mnt which can contain mount points of other storage devices (usb key, other
hard disk, NFS, etc) today the tendency is rather to use /media (or
/run/media).

/home containing one directory per user in which all the user's files are stored.

For a user (for example "etudiant" in the rest of the document the login will always be
etudiant), the most important directory will be /home/etudiant.

(Windows equivalence: you can give /home/student as My Documents or C:\Users\
etudiant)

This is where all his files will be. Thus the user's files will be distinctly separated from
the system files.

This is what this example of a tree structure looks like from the root "/":

The first steps will therefore be to take control of the working environment via the
appropriate tools. With the recent Linux distributions, it is possible to have a graphical
work environment (like Windows). This is often sufficient for "office" use of the system,
such as writing a report, making pictures/images or simply going on the Internet.
However, for a use like modeling, the terminal (or console) and the command line are
much more efficient. This is even indispensable when it is necessary to connect
remotely to a computing machine while the connection speed is low (which can make
the use of any graphical interface very laborious and some time really painful).

Linux for beginner : little helper to start with SYMPHONIE 4

2. Opening a terminal
The terminal is a program that opens a console in a simple graphical interface. This
console allows you to launch bash commands that will be executed by the machine.

To open a terminal, there are several solutions:
 - Go through the graphical interface: Menu → System → Terminal
or directly from the keyboard:
 - <Alt><F2> and type konsole then < enter >

That's it you have opened a terminal. By default, the terminal opens in the
/home/etudiant directory which the user names "home".

(Windows equivalent: The terminal opens by default in My Documents)

The line that appears in the terminal looks like this
etudiant@machine:~>

This line gives you, the user name (etudiant) the name of the machine on which you
are connected (here machine), the symbol " ~ " represents the " home " of the user
(we will often come back to it for explanations) and the character " > " invites you to
enter a command. This last character can vary according to the installations.
Then you have a white square, it is the command cursor or the prompt.

All you have to do is type a command and press "enter" to execute it. This is the next
step.

3. Some basic command principles in LINUX

3.1 General definition of a command:

A command is either a program in its own right (that you would have coded for
example), or integrated into the shell. To make a long story short, the shell is the
computer language that will understand the commands (and therefore execute them)
that you will use in the console.

The commands always use the same formatting, namely :
command [OPTIONS] [PARAMETERS]

The options allow you to modify the behavior of the command, and the parameters
can be the target, for example a file or a directory. What is in square brackets ([]) can
be, or not be, specified. Depending on the desired behavior of the command they are
not necessary. Often options include the "-" sign (minus sign), so the command
interprets what is behind this sign as an option. We will see this again later.

Windows equivalent: the file explorer executes LINUX commands in the background.
When you rename a file in the file explorer, it executes the "move" or mv command:
mv myFile myRenamedFile . So you can do a lot of things without a graphical interface.

Most of the commands are counter-intuitive (at first sight) because they are often
contractions of English words. For example to know the content of a directory the
command is "ls", it is a contraction of the word "list". So "ls" will list the contents of

Linux for beginner : little helper to start with SYMPHONIE 5

the current directory.
More explicitly, the command : date , will give you the date of your computer. It's
easy!

Exercise: try the date command... and there you have it, a command under Linux! So,
isn't it great?

4. The tree structure :

how to find your way around, know the contents and move around:

To start seeing some sample commands, we'll kill three birds with one stone: knowing
where you are, seeing the contents, and how to move through the tree.
File and folder paths in Linux use the slash "/" to separate folder names. The tree
structure from the root for a file: "fichier.txt" which would be contained in the
directory "lib" itself contained in the directory "usr" is therefore :

/usr/lib/fichier.txt

As a reminder, at the beginning we are on the user's directory, that is:
/home/etudiant
This is what we call the "home" of the user.

4.1 Where are we?

To find out the name of the directory in which you are, which is called the current
directory, the command is: pwd (print working directory)
If we are in the home of the user "etudiant", pwd returns :

/home/etudiant

Exercise : Display the name of your current directory : pwd

4.2 How to know what is in the directories :

To know the content of the current directory, we use the command: ls
ls means "list". ls will return the list of directories and files contained in the current
directory.

Exercise: use the ls command to see the contents of the current directory.

Some options of ls, for the options of ls you have to use the "-" sign :
 -l displays a detailed list (with creation times, rights, size, etc)
 -a shows ALL files, even "hidden files
 -h (h for human readable) converts the size (in bytes by default) in KB, MB, GB to
make it more readable.
 -R (capital letter, R for recursive) recursively gives what is in the sub-directories,
be careful from the root "/" ls -R will show you all the content of the system... not a
good idea...
 -r (lowercase) gives the same result but "reversed" (r like "reverse")

Linux for beginner : little helper to start with SYMPHONIE 6

Exercise : Display the content of this directory with the l, r, h and t options separately
or together: ls -l, then ls -r , then ls -lht etc…

For an example of [PARAMETERS] on the ls command, we can use a directory name.
If we do not specify, the command will be carried out on the current directory.
For example in the results of the exercises from the "home", there was the directory
TP_LINUX. It is then possible to see the contents of this directory with the command:
ls TP_LINUX.
But if you give the name of a different directory it also works as long as you respect
the path to this directory in relation to the location of the current directory. The
notion of path is very important in terms of understanding the tree structure in the
console. We will explore this notion with the ls command and also the command that
allows you to move in the tree.

So with the ls command we can find out what a directory contains, and possibly its
sub-directories. There are a lot of options, some of them are about the size of the files,
their creation dates or we can make the list by imposing that the result contains or
excludes (-I, capital i) some strings.
Example: ls -I test.txt will list all files and directories in the current directory except
the file test.txt.

4.3 How to move in the directories: relative path and absolute path

To move in the file system, we will use the command: cd
cd means "change directory" .
We can specify either a relative path or PATH (path in English) relative (in relation to
the current directory) or absolute (in relation to the root " / ").
So an absolute path always begins with /.

For example :
cd Rep1 moves us to the directory "Rep1" from the current directory, it is a

relative path.
cd /REP1 moves us directly to the directory "REP1" from the root, this is an

absolute path.

The [PARAMETERS] used here are Rep1 or /REP1, they are information for the "cd"
command. If we don't specify anything, the command : cd will send us directly to
"home" (/home/etudiant). Other special "parameters" exist, here are 4 very
important and/or useful ones:

- the ". "
- the ".. "
- the " - "
- the " ~ "

The ". "(the "dot") represents the current directory, so: "cd ."doesn't change
anything, you stay in the same directory. But this designation is important for other
purposes than the command "cd".

Linux for beginner : little helper to start with SYMPHONIE 7

The ".."(the "dot" "dot") is the "parent" directory (that is, the one that contains the
current directory). For the "home" of the user "etudiant", that is /home/etudiant,
the parent directory is /home. So to go back one step from the current directory the
command would be: "cd .. "simply.
For two steps backwards it will be: cd ../.. and so on.
This parameter is fundamental to understand how to move efficiently in the tree
structure. You must not neglect it!

The "-" (the "minus sign") is the directory where you were before the current directory.
If for example you were in the directory : /home/rep1, and you had then changed
directory with, for example, the command : " cd /home/rep2 " (that is to say to pass
from /home/rep1 to /home/rep2 with an ABSOLUTE path). Then to go back to
/home/rep1 you just have to use the command : cd - .
And if you ever wanted to go to /home/rep2 again, you just have to use the same
command : cd - . Because this time the old directory would become /home/rep2 .

Finally, the " ~ " (pronounced tilded), this parameter corresponds to the " home " of
the user. In our case the "home" is /home/etudiant so the commands :
"cd ~" or "cd /home/etudiant" will do the same thing as "cd".
The ~ doesn't seem to be useful when presented like this but if your "home" is: /path/
to/my/new/home/login_name and you want to go to the rep1/toto/ folder of your
"home" from the directory: /truc/machin/bidule/tata (or anywhere else in the tree),
you will only have to use the command
cd ~/rep1/toto , which is quite easy, isn't it ?
And it's shorter than cd /path/to/my/new/home/login_name/rep1/toto ...especially
if you have to type it...

So you can move from several directories in the tree. To move from /home/rep1 to
/home/rep1/rep2/rep3 you can do directly :
cd rep2/rep3 (in relative path) or cd /home/rep1/rep2/rep3 (in absolute path).
In the same way, if we are in the /home/rep1/rep2/rep3 directory and we want to go to
the /home/toto1 directory, we can use cd ../../../toto1 (in relative path), etc.

Linux for beginner : little helper to start with SYMPHONIE 8

Visually, what does it look like?
If we are in the "home": /home/etudiant .
The command: cd simulations makes us go to /home/etudiant/simulations :

from this directory (/home/etudiant/simulations) the command: cd ../../foo/rep2
sends us to the directory /home/foo/rep2 :

Linux for beginner : little helper to start with SYMPHONIE 9

Exercise : Use the command : cd ~/TP_LINUX . From this directory and with the help
of the tree diagram of this one (given below), test the result of the cd command in
relative path to go to the directory rep21. Then try to go directly from this directory
to the directory rep111. Use the pwd command to see if you are where you think you
are and use the ls command to see what the directories contain. Then practice
moving around the TP_LINUX directory tree as you wish.
Finally use the command "cd" alone to return to the "home".

To summarize this first part:

- Under linux, everything is organized in the form of files and directories. There is no
disk like in windows like C: or D: etc…

- All folders are accessible from a directory called the root: /

- The starting folder of the user (for example etudiant login), where she/he will
store all her/his files is the home: /home/etudiant

- the command to find out the name of the folder where you are is : pwd . This
folder is called the current directory.

- The position of the directories in the tree is what we call the path or the PATH . A
path is either relative (to the current directory) or absolute (from the root)

- The ls command is used to list the contents of directories

- cd is used to move from directory to directory.

Linux for beginner : little helper to start with SYMPHONIE 10

5. Practical use of the console shortcuts

5.1 The Completion

The shell (the command interpreter) offers an interesting feature: the completion
which automatically completes what you type, by using the "TAB" key (tabulation
key)
-If the machine "beeps", it means that it is impossible (nothing matches)
-If it does not beep, but nothing happens, it is hesitating. Press TAB again so that it
lists the set of possibilities, and complete a little more...
-If it finds without ambiguity, it completes, whether it is the name of a directory, a file
or an executable…

Exercise: go to the TP_linux directory using the command: cd ~/TP_linux
Then type: cd r and press "TAB" once. The machine completes "r" and gives rep.
Press "TAB" again, the machine then finds several possibilities, here rep1/, rep2/,
rep3/ and rep4/. Type for example 2 and then "TAB" twice again, the machine then
gives two new sub-directories rep21/ and rep22/ as possibilities.

5.2 History, command recall and copy/paste with the mouse :

-History

In computer science you have to know how to be lazy, as we often carry out the same
type of command over and over again, it is very practical to know how to find a
command that we typed five minutes ago (or even five seconds ago) and if possible
without having to do it again ourselves. A computer rarely forgets what it has done,
unlike us poor organic brains...

The history command will list all the commands you have already typed in the
console.

Exercise : try this command in the console.

- Command recall

Knowing what you have already typed as a command is already good, it helps to know
what you have done (if you have not made a mistake for example) or how you have
done it. But what is even better is to be able to do it again very quickly. By using the

"up arrow" key it allows you to go back in the history of your commands and
once you find the one you want to execute it immediately by pressing "enter".

Of course the "down arrow" key allows you to go back to a more recent
command.

Exercise: test this feature to find the last "cd" command you executed.

Sometimes it still doesn't go fast enough. For example, if you are looking for an old
command line typed several hours ago. It is possible to find it in several ways.

If you know how it starts: for example "ls", you type ls in the console without
pressing "enter", then you use the "Page Up" key as you would use the "Up Arrow"
key, i.e. "Page Up" will take you up the history of commands that start with "ls" and
"Page Down" key will go the other way.

Linux for beginner : little helper to start with SYMPHONIE 11

Exercise: use the "page Up" key to search for the last command beginning with "ls".

More advanced keyword search, Ctrl+R (Capital R): find a command typed with a few
letters

In case the "up arrow" and the history command are not enough to find an old
command you have typed, there is a very useful shortcut: Ctrl +R. So press the Ctrl
and R keys at the same time and the computer will go into "search for a typed
command" mode ("R" for Search).

Here you can type any string that matches an old command. For example, press Ctrl +
R and then type "all". Linux finds the command ls --all which contained the word "all".
You just have to type “Enter” to run the command again!

(reverse-i-search)`all': ls --all

If this is not the command you were looking for, press Ctrl + R again to move up the
list of commands containing "all".

It may look silly on a command like this, but some of them are really long and it's a
real pleasure not to have to rewrite them all!

Exercise: test this feature with the string of your choice (it must have been in a
previous command).

- copy/paste with mouse
It is often possible to save a lot of time by copying and pasting with the mouse. To do
this under Linux, simply select the text you want to copy by highlighting it with the left
mouse button. This action will put the selected content in memory. Then you just have
to click with the mouse wheel (on laptop pad using right and left click at the same will
do the same) to paste this selection at the place where you put your cursor. In the
case of the console you can only write at the command line level. So no matter where
you put your mouse in the console window the "paste" will always be done at the
prompt.

Exercise: test the copy/paste with the mouse on the "ls" command from the previous
exercise.

With the ls command, you can see lists of objects (files and directories), regardless of
their nature. By using special characters, which are called jokers, it is possible to make
particular lists according to our needs.

5.3 The jokers :

A Joker is a special character that allows you to replace strings:
 - * Replaces an entire string, any string (even no string !)
 - ? Replaces a single character, any character but one!

For example, the command ls test* will list all files starting with "test":
test1 test2 test10 testa2 etc....
while the command ls test? will list only the files of 5 characters beginning with test:
test1 test2 test3

Exercise: We will test the ls commands and the use of jokers.
Using the ls command list the files :

Using the joker * :
- list the files starting only with "Prog".
- then those beginning with "test"

Linux for beginner : little helper to start with SYMPHONIE 12

- then those ending with the extension ".txt

Using the joker ? :
 - list files of 6 characters starting with "test

with * and ?

- list files with "a" in 5th position

Then make your own experiment.

5.4 The Permissions :

By doing the command ls -l we can see a lot of information, what does it mean?

 -rwxr-xr-x 1 etudiant users 30 13 avril 19:48 test_com.exe
 -rw-r--r-- 1 etudiant users 2501 13 avril 19:32 Prog_system.f90
 drwxr-xr-x 2 etudiant users 4096 13 avril 19:32 Rep1
 ^\ /\ /\ / ^ ^ ^ ^ ^ ^ ^
 | ^ ^ ^ | | | | | | |
 | | | | | | | | | | |
 | | | | | Owner Group Size Date Time File_name
 | | | | Numbre of sub-directories that the listed directory contains,
 | | | | it also takes into account « . » and « .. »
 | | | Permissions for all other users (not part of the group)(3 positions for
 | | | r,w,x see below)
 | | Permissions for group members (3 positions for r,w,x see below)
 |Permissions for the owner: r = read, w = write, x = execute, - = no rights
 |
Type of file : - = regular file, d = directory, l = symbolic link or other

As far as permissions are concerned, if you have the rights (which is typically the case
if you have created the files), it is possible to change them using the chmod
command. For example, to make test_com.exe executable you use the command:
chmod +x test_com.exe. But now don’t do it yet.

Exercise: without having changed the permissions, type ./test_com.exe then "enter".
what happens?
If you first do : chmod +x test_com.exe
then ./test_com.exe and “enter” again... You have made the lines of code contained
in the file available for execution. And the little code works now
Now if you remove the permission of execution using “-x” instead of “+x” with the
command : chmod -x test_com.exe and “enter” then : ./test_com.exe is not
working again !

What you need to know about changing permissions:
The command is describe by :

chmod [ugo][+-=][rwx] file

- u : user , g : group members and o : others
- r : read, w : write and x : execute

So you have to choose the group to modify (u, g, o) followed by the + symbol to give a
permission, the - symbol to withdraw it or the = symbol to define the exact permission
followed by the permissions to apply (r, w, x).
For example to grant the user to execute the file.

chmod u+x file

Linux for beginner : little helper to start with SYMPHONIE 13

Or to remove the write and execute rights to the group and others.
chmod go-wx file

Now that you have seen how to change directories and list the various objects
contained in them, we will see how to manipulate these objects.

5.5 Create and delete a directory:
The command: mkdir reptest will create a directory "reptest" in the current
directory (mkdir for make directory). To create a directory at an address other than the
current directory, you have to put the path, either in relative or absolute.

For example, mkdir /home/etudiant/TP_LINUX/reptest will create a directory
resptest in the directory /home/etudiant/TP_LINUX (if it exists). This is an absolute
path creation. In relative path it can be simply mkdir ../reptest that will create a
directory resptest in the previous directory in the tree.

To delete a directory, the command rmdir reptest (remove directory) will delete the
directory reptest, if it is empty. We will see later another command to delete a
directory and all its sub-directories with the rm command.

WARNING: unlike Windows which has a Trash can, by default
when you delete a directory or a file with the rmdir or rm
commands it is permanent!

5.6 Handling of files and directories:

 - Copy :
cp (copy) allows you to copy files (or directories).
For example,

• copy FILE1 to FILE2 the command will be :
cp FILE1 FILE2

• copy FILE1 AND FILE 2 into the directory DIRECTORY the command will be:
cp FILE1 FILE2 DIRECTORY/

• cp -r (or cp -R) allows you to copy a directory recursively: cp -r rep1 rep5 the
entire rep1 directory will be copied into the rep5 directory. If the directory
already existed it will contain the contents of the rep1 directory in addition to
what it already contains. Be careful if two files have the same name
already in rep1 and rep5. The one in rep5 will be overwritten by the
"new" one from rep1.

- Rename or move
mv (move) allows to rename a file or a directory.

• mv FILE1 FILE2
FILE1 will then be renamed FILE2. This also works for directories. If FILE1 was a
directory then FILE2 will also be a directory with everything that was in
FILE1...etc.....

• mv FILE1 [FILE2]... DIRECTORY/
File1 (and other file FILE2 etc.) is moved to the directory : DIRECTORY .

- Delete : WARNING THIS IS PERMANENT!!!

rm (remove) allows you to delete files (or directories)
• rm [OPTIONS] FILE1 [FILE2]...

FILEn can be directories but you have to use the « -r » option like for cp. WARNING

Linux for beginner : little helper to start with SYMPHONIE 14

THIS IS PERMANENT!!!

Exercise : From the ~/TP_LINUX directory
With the command cp :
copy in rep1 the file testa1. Then check your action with the ls command if the file
testa1 exists in the rep1 directory.

With the rm command
remove the file testa1 from the directory rep1
Check your action with the ls command if the file testa1 has been removed from the
rep1 directory

copy all the files beginning with " test " in the directory rep4 with the command ls and
the joker *
Check your action with the ls command by listing the contents of the rep4 directory.

With the cd and mv command
From the TP_LINUX directory, go to the rep2/rep22/rep221/ directory
Then from this directory move the file "rep_test" to the directory rep3 which is in the
initial TP_LINUX directory.
Check your action with the ls command by listing the contents of the rep3 directory
and also check that the rep_test file no longer exists in the
TP_linux/rep2/rep22/rep221/ directory.

5.7 Viewing and editing files :

There are several commands that allow you to edit files or simply view them.
Here are several commands that are very useful.

cat file displays the content of the file on the screen in ASCII

more file
displays a file progressively on the screen: Enter = go down one line,
Space = go down one page, q = quit

less file
like more, but you can use the Back Page key. Not available on all
systems.

head file displays by default the first 10 lines of a file
head -n{N}
file

displays the first N lines of a file

tail file displays by default the last 10 lines of a file
tail -n{N} file displays the last N lines of a file

Exercise: From the TP_LINUX directory, with the cat command, display the contents
of the test.txt file.
Compare with the use of the commands more, less, head and tail. For better
readability, use the clear command between each test

The rest of the document is not necessary for primary use of the console in the case of
modeling with SYMPHONY. Of course you will have seen only a minor part of the
commands, but it is still very sufficient. In the following we present several other
commands that you will probably need if you go further in the modeling. This is a new
language with its syntax and vocabulary but don't forget that the commands always
work on the same principle. So as the author would say: DON'T PANIC!

Linux for beginner : little helper to start with SYMPHONIE 15

5.8 Text Editor and Co

In a terminal, the two most popular editors are vim (or vi) and emacs. Both are equally
valid. They require a little investment to get used to them, but from the point of view
of remote file editing and without a graphical editor they are of enormous interest.

vi file
edit a file with vim text editor . All linux system has vim installed

emacs file
edit a file with emacs text editor . All linux system hasn’t emacs
installed

A vi help is available at the end of this document.

More accessible and advisable for beginners, there are several editors that are more
similar to WORD, like kate, kedit, gedit, gvim, etc. They are not always installed by
default but it is very easy to get them.

5.9 Finding a file: the find command

It is sometimes laborious to search for a file in the tree of the disk on which you are
working. For that there is the find command.

find [path] [criteria]

The most common options for find are :
• -name file_name : The name of the file you are looking for
• -user user_name : The owner of the file is name
• -group group_name : Same thing with group
• -size [+-]file_size[cbkMG] : Selects if the size matches (use + or - for

larger than or smaller than, and c b k M G to indicate the unit of measurement
of size...)

• -atime number , -mtime number , -ctime number : The file has been
accessed, modified or created less than « number » days ago.

To use several criteria: (expr -or expr) (expr -and expr)

Example the command :
find . -name file.txt -and -size +10k :
will search from the current directory « . » and its sub-directories, all files that
have the name "file.txt" and a size greater than 10ko.

Exercise: use the command: find . -name fichier.txt
then, try : find . -name fichier.txt -and -size +10k, what is the difference between
the two results? Confirm that the fichier.txt file in the rep2/rep21 directory is less
than 10kb while the one in rep3 is more than 10kb by using the ls command with the
necessary option(s).

5.10 Search for a string : the « grep » command

grep string file searches the file for the string "string"
Thus used the command does not reveal its full potential. By doing a search for the
string on a list of files (using the joker "*" for example), it allows to find all the
corresponding strings in all the files of the list.

For example: do the command grep Jedi test.txt,

Linux for beginner : little helper to start with SYMPHONIE 16

then the command grep Jedi test*, this last one writes to the screen all the lines of
the files of the list test* containing the character string "Jedi".
The result gives the name of the corresponding file as well as the string you have
highlighted.

5.11 The redirection « > » (and “>>”) and the "pipe" « | »:

The commands we've seen so far return text, either file lists or information. These
lines of text can be further processed.

The simplest way is the redirection using the « > » character.
For example, the command ls test* returns a list of files or directories in the current
directory beginning with "test". If you do the command: ls test* > toto1 you create a
text file toto1 which contains the result of the command. Be careful, if the file toto1
already exists, its content will be overwritten by the result of the command.

Exercise : do this command : ls test* > toto1 then using the command more toto1
check the content of toto1.

You can also redirect the result of a command to add it at the end of an already
existing file using « >> ». By doing the command: ls test* >> toto1, toto1 will
contain twice the result of the command ls test* (the previous one from the exercise
and the new one from the second command).

Another type of redirection is the so-called "pipe" or the "|" character ("|" is obtained
on a french PC keyboard by pressing the keys: <Alt Gr> <6>, on english PC keyboard
it is <Shift> « left to enter »). This command is used to link several commands
together. Schematically, it acts like this: command1 | command2 i.e. command2 will
be executed on the result of command1. There are multiple uses of this feature. For
a simple example, ls test* | grep 1, this command will search for the string "1" in the
list of files that start with "test".

Another example as an exercise, use the command ls -R ~/* . The result is huge and it
scrolls on the screen without you having time to see what is going on. If you use the
command: ls -R ~/* | more you have time to see the information on the screen
"page by page". To exit this mode, simply press "q".

This addition of the "| more" command can be very useful when running a program. It
allows you to follow the progress of the program in a debugging session.

5.12 File archiving and compression:

Without going into detail, you can always come back to it later according to your
needs, the tar and gzip commands allow you to archive files and trees (with tar) and
to compress them (with gzip).
This is useful to save memory space, to archive directories or to send a large number
of files in a single archive.

Examples for tar :

tar -xvf archive.tar
extracts the files from the archive archive.tar,
displaying the names of the files in it

tar -xvzf archive.tar.gz
extract the files from the archive using gzip
and then tar

tar -jxvf archive.tar.bz2 extracts the files from the archive using bzip2

Linux for beginner : little helper to start with SYMPHONIE 17

then tar

tar -cvf archive.tar file1 [file2…]
creates a file "archive.tar" containing file1,
file2...

tar -cvzf archive.tar.gz my_folder
creates a gzip file containing all the content of
the folder 'my_folder

tar -tvf archive.tar
Allows to see the content of an archive without
extracting it

Example for gzip :

gzip file.txt
creates the compressed file
file.txt.gz from file.txt

gunzip
file.txt.gz

extracts the file file.txt from
file.txt.gz

5.13 Need help learning more about a command and its options?

Most commands have a manual page that gives a description of their uses in varying
degrees of detail, sometimes useful, sometimes obscure. Nevertheless it is usually
useful, but you have to know how to sort out the information. You will often only need
a small part of the information that is provided.
This command is: man (like manual).
For example, to know the options of the tar command, just type :

man tar

Always try to use the internet when you can... google will find examples for the
different commands. You should never neglect this possibility. We use it all the time
even when we are used to Linux.

Linux for beginner : little helper to start with SYMPHONIE 18

6. Beyond the current Linux command

Several actions are possible under the linux environment to allow you to better use the
machine.

6.1 suspend and resume an action :

For example, you are in a vi editor. You want to check a filename under the directory
and return to the editor. To do this you can use <Ctrl><z> to suspend the activity of
the vi editor. Then to return use the fg (for foreground, bg will put your vi session in
background but it is not very usefull...) command is used to make the suspended
program (in the example vi) active again.

6.2 Remote connection

You will have to connect to computers to do modeling in the future. For that you will
have to connect to a remote machine. For that we use the ssh command like for
example,
ssh your_login@host_ip_adress
to have a graphical server, you have to add -X (X in capital letter) after the ssh, like
this
ssh -X your_login@host_ip_adress
Obviously, to be able to do this you will need to get a login and password on the
machine in question.

Very often, at the beginning, the administrators of these machines will give you a
temporary password that you will have to change quickly for more security. To
change the password (on a remote machine or not) you have to log in first, then use
the command: passwd

For the purposes of this tutorial, please do not do anything of the
sort. But the information will probably be useful to you in the future.

It is also possible to copy files from a remote machine to a local machine and vice
versa (depending on the rights you have as a user of course).
There are several commands, one of the most common is scp. It works like the cp
command. Either : scp source destination
For example,
scp your_login@host_ip_adress:/home/your_login/file1.txt file2.txt
this command will copy from the remote machine " host_ip_adress " the file " file1.txt "
which is in the directory " /home/your_login/ " and copy it in the current directory
under the name file2.txt

6.3 See the running processes and how to stop a process:

The top command gives the running processes with user names, load in % of CPU and
memory. But also a process number designated by the PID. This PID is the
identification of the process. To quit the top command just press « q ».

To stop a process we will use the kill process_number command. Be careful to stop the
process you want…

Linux for beginner : little helper to start with SYMPHONIE 19

7. Checklist of basic commands.

System commands :

ls list files and folders
 -l : detailed list
 -a : show all hidden files and folders
 -F : indicate the type of item
 -t : sort by last modification date

Count the number of files in a directory : ls (display) and count the number of lines (wc
-l) : ls -la | wc -l

ls -al | wc -l

cd "path" : change folder
 relative : cd ../../user
 absolute : cd /usr/games

du : size occupied by the files
 -h : the size for humans
 -a : show the size of folders AND files
 -s : get just the grand total

df -h : know the used space

cat : show all the file
less : display the file page by page

head : display the beginning of the file
tail : display the end of the file

touch : create a new empty file
mkdir : create a new folder

cp : copy a file
 ex : cp *.jpg myfolder/

copy a file from one linux to another linux with ssh:
scp -r /home/bidule.rpm 8.8.8.8:/home

mv : move a file
 ex : mv *.jpg myfolder/
Rename a file :
 mv filebidon superfile

rm : delete a file
 -i : ask for confirmation
 -f : force the deletion, whatever happens
 -v : tell me what you are doing, you little sneak
 -r : delete a folder and its content

Linux for beginner : little helper to start with SYMPHONIE 20

ln : create links between files (shortcuts)
 -s : symbolique link

Users and rights :

sudo "command": become root for a moment
sudo su : become root and stay root

passwd : change the password

usermod : modify a user
 -l : rename the user (the name of his home directory will not be changed though)
 -g : change group

chmod : change access rights
 + means "add the right".
 - means "remove the right".
 = means "assign the right".
 u = user (owner)
 g = group
 o = other

ex: chmod -g+w report.txt
 -R to assign recursively

ex: chmod -R -g+w my_folder/

Search for files :

history : Displays the command history
 -c : delete command history

locate : a quick search (not installed by default)
 ex: locate notes.txt
 => /home/mateo21/notes.txt
/! the flaw of locate I wanted to tell you about: the command does not search your
whole hard disk but a database of your files. Once a day, your system will update
the database. Force indexing in the database : updatedb

find : search the files currently present on the whole hard disk
 find "where" "what" "what to do with" (where : it's the name of the folder in which
the command is going to search // what : it's the file to search // what to do with : it's
possible to do actions automatically on each of the found files)
 (only the "what" parameter is mandatory)

 Search by name
 find -name "logo.png
 ex: find /var/log/ -name "syslog
 Search by size
 find -size +10M
 Search by date of last access
 find -name "*.odt" -atime -7

 -type d : to search only directories.
 -type f : to search only files.

"what to do with":

Linux for beginner : little helper to start with SYMPHONIE 21

 -print : display
 -delete : delete
 -exec : execute a command

Extract, sort and filter data :

grep : filter data (Its role is to search for a word in a file and to display the lines in
which this word was found.)
 -i : not to take into account the case (upper / lower case)
 -n : know the line numbers
 -v : reverse the search : ignore a word
 -r : search in all files and subfolders (ex: grep -r "Site du Zéro" code/)
 Use grep with regular expressions:
 grep -E [Aa]lias .bashrc ... returns all lines that contain "alias" or "Alias".
 grep -E [0-4] .bashrc ... returns all lines that contain a number between 0 and 4.
 grep -E [a-zA-Z] .bashrc ... returns all lines that contain an alphabetic character
between a and z or between A and Z.

sort : sort the lines
 -o : write the result in a file (ex: sort -o names_tries.txt names.txt)
 -r : sort in reverse order
 -R : sort randomly
 -n : sort numbers

wc : count the number of lines/words/bytes
 -l : count the number of lines
 -w : count the number of words
 -c : count the number of bytes
 -m : count the number of characters

uniq : delete duplicates
 -c : count the number of occurrences
 -d : display only duplicate lines

cut : cut a part of the file (ex: cut -c 2-5 names.txt => keep only the characters 2 to 5
of each line of the file)
 ex: cut -c 3- names.txt => from 3rd to last

 Cut according to a delimiter
 -d : indicates the delimiter in the file
 -f : indicates the number of the field(s) to cut
 ex : cut -d , -f 1,3 notes.csv

Redirection flows:

> : redirect to a new file
>> : redirect to the end of a file

2> : redirect errors in a new file
2>> : redirect errors to the end of a file
2>&1 : "send errors to the same place as the rest"

< : read from a file
<< : read from keyboard progressively

Linux for beginner : little helper to start with SYMPHONIE 22

| : chain commands : "Chain commands" ? This means connecting the output of one
command to the input of another command.

Monitor system activity:

who : The list of connected processes

ps : list of static processes
 -u USER : list processes started by a user
 -ef : list all processes of all connected users
 -ejH : display processes in tree

top : list dynamic processes

Ctrl + C : stop a process launched in console

kill : kill a process (you have to get the PID of the process(es) you want to kill. For this,
2 solutions : ps / top)
 -9 : stop the process

reboot : restart the computer (may not work depending on your administration rights)

Archiving and compressing :

 tar -cvf : create a tar archive
 -c : means "create" a tar archive.
 -v : means to display the details of the operations.
 -f : means to assemble the archive into a file.

 tar -tf : display the content of the archive without extracting it
 tar -rvf : add a file
 tar -jxvf (for bizip)/ -xzf : extract files from the archive (extracted in the directory you
are in)

 gzip & bzip2 : compress an archive
 * gzip : it is the most known and the most used.
 * bzip2 : it is a little less frequently used. It compresses better but more slowly
than gzip
 => compresses then modifies the name:
 .tar.gz : if the archive has been compressed with gzip.
 .tar.bz2 : if the archive has been compressed with bzip2.

 gunzip & bunzip2 : decompress an archive

* tar -zcvf : archive and compress with gzip

* tar -jcvf : archive and compress with bzip2

 zcat : equivalent of cat, able to read a compressed file (gzipped).
 zmore : equivalent of more, able to read a compressed file (gzipped).

Linux for beginner : little helper to start with SYMPHONIE 23

 Zless : equivalent to less, able to read a compressed (gzipped) file.

 unzip -l : unzip a .zip file
 unrar e : unzip a .rar (install the unrar package)

Remote connection :

install openssh-server (on debian/ubuntu):
 sudo apt-get install openssh-server

se onnecting :
 ssh login@ip

Transferring files:

wget + URL
scp : copy files over the network

ftp server connection:
 ftp ftp.debian.org (/or sftp)
 put : send a file to the server.
 get : download a file from the server

rsync : compares and analyzes the differences between 2 files and copies only the
changes
 -a : keeps all the information about the files, like the rights (chmod), the
modification date, etc.
 -r: also saves all subfolders in the folder to be saved.
 -v: verbose mode, displays detailed information about the current copy.

Linux for beginner : little helper to start with SYMPHONIE 24

8. Text editor in the terminal: VI

Vi is one of the most popular text editors under Linux (with Emacs and pico) despite its
very limited ergonomics. Indeed, Vi is an editor entirely in text mode, which means
that each action is done with text commands. This editor, although not very practical
at first sight, is very powerful and can be very useful in case the graphical interface is
not working.

The syntax to launch Vi is the following:

vi file_name

Once the file is open, you can move around using the arrow keys, as well as the h, j, k
and l keys (in case the keyboard does not have arrow keys).

8.1 The modes of Vi

Vi has 3 modes of operation:

• Normal mode: the one you are in when you open the file. It allows you to type
commands

• Insert mode: This mode allows you to insert the characters you type into the
document. To switch to insert mode, simply press the Insert key on your
keyboard, or alternatively the i key.

• Replace mode: This mode allows you to replace the existing text with the text
you enter. You just have to press insert (or i) again to switch from insertion
mode to replacement mode, and press the Esc key to return to normal mode.

8.2 Basic commands

Commande Description
:q Quit (without save)

:q!
Force vi to quit without saves (discard all the changes that have been
made to the document))

:wq Save and quit
:w myfile Save in new name file « myfile »

The "! "is used to force the editor to do the command. It is applicable to :w

8.3 Editing commands

Commande Description
x Deletes the character currently under the cursor
dd Deletes the line currently under the cursor
ndd Deletes n lines from the one currently under the cursor
nx Deletes n characters from the one currently under the cursor
nyy Copies n lines from the line currently under the cursor
p Pastes the contents of the clipboard
dw Deletes the word under the cursor
d0 «(dzero)» Deletes the cursor at the beginning of the line

Linux for beginner : little helper to start with SYMPHONIE 25

d$ Deletes the cursor at the end of the line
u Cancels the changes (successively)
G (« shift+g ») Sends to the end of the file
nG Sends to line n of the file

8.4 Find and Replace

To search for a word in a document, you just have to type / followed by the string you
want to search for, then validate by pressing the enter key. It is then possible to go
from occurrence to occurrence thanks to the n key.

To go back to the previous occurrence you have to use the key combination "shift+n".

To replace a string by another one on a line, there is a very powerful command under
Vi using regular expressions. Here is its syntax:

:s/string_to_replace/replacing_string/

For a replacement on a given number of lines, for example we do the replacement on
line 10 to 15:

:10,15s/string_to_replace/replacing_string/g

It is possible to generalize it to the whole document thanks to the following syntax:

:%s/string_to_replace/replacing_string/g

This document is not intended to be exhaustive, there are a wide variety of commands
in Vi or Vim. Many pages on the internet are available to help you.

Linux for beginner : little helper to start with SYMPHONIE 26

Vim Commands Cheat Sheet

(from : https://www.fprintf.net/vimCheatSheet.html)

How to Exit

:q[uit] Quit Vim. This fails when changes have been made.
:q[uit]! Quit without writing.
:cq[uit] Quit always, without writing.
:wq Write the current file and exit.
:wq! Write the current file and exit always.
:wq {file} Write to {file}. Exit if not editing the last
:wq! {file} Write to {file} and exit always.
:[range]wq[!] [file] Same as above, but only write the lines in [range].
ZZ Write current file, if modified, and exit.
ZQ Quit current file and exit (same as ":q!").

Editing a File

:e[dit]
Edit the current file. This is useful to re-edit the current file, when it has
been changed outside of Vim.

:e[dit]!
Edit the current file always. Discard any changes to the current buffer. This
is useful if you want to start all over again.

:e[dit]
{file}

Edit {file}.

:e[dit]!
{file}

Edit {file} always. Discard any changes to the current buffer.

gf
Edit the file whose name is under or after the cursor. Mnemonic: "goto
file".

Inserting Text

a Append text after the cursor [count] times.
A Append text at the end of the line [count] times.
i Insert text before the cursor [count] times.
I Insert text before the first non-blank in the line [count] times.
gI Insert text in column 1 [count] times.
o Begin a new line below the cursor and insert text, repeat [count] times.
O Begin a new line above the cursor and insert text, repeat [count] times.

Inserting a file

:r[ead] [name] Insert the file [name] below the cursor.
:r[ead] !{cmd} Execute {cmd} and insert its standard output below the cursor.

Deleting Text

 or
x

Delete [count] characters under and after the cursor

X Delete [count] characters before the cursor
d{motion} Delete text that {motion} moves over

Linux for beginner : little helper to start with SYMPHONIE 27

dd Delete [count] lines

D
Delete the characters under the cursor until the end of the
line

{Visual}x or
{Visual}d

Delete the highlighted text (for {Visual} see Selecting Text).

{Visual}CTRL-H or
{Visual}

When in Select mode: Delete the highlighted text

{Visual}X or
{Visual}D

Delete the highlighted lines

:[range]d[elete] Delete [range] lines (default: current line)
:[range]d[elete] {count} Delete {count} lines, starting with [range]

Changing (or Replacing) Text

r{char} replace the character under the cursor with {char}.
R Enter Insert mode, replacing characters rather than inserting

~
Switch case of the character under the cursor and move the cursor to the
right. If a [count] is given, do that many characters.

~{motion
}

switch case of {motion} text.

{Visual}~ Switch case of highlighted text

Substituting

:[range]s[ubstitute]/{pattern}/
{string}/[c][e][g][p][r][i][I] [count]

For each line in [range] replace a match of
{pattern} with {string}.

:[range]s[ubstitute] [c][e][g][r][i]
[I] [count] :[range]&[c][e][g][r][i]
[I] [count]

Repeat last :substitute with same search pattern
and substitute string, but without the same flags.
You may add extra flags

The arguments that you can use for the substitute commands:
[c] Confirm each substitution. Vim positions the cursor on the matching
 string. You can type:
 'y' to substitute this match
 'n' to skip this match
 to skip this match
 'a' to substitute this and all remaining matches {not in Vi}
 'q' to quit substituting {not in Vi}
 CTRL-E to scroll the screen up {not in Vi}
 CTRL-Y to scroll the screen down {not in Vi}.
[e] When the search pattern fails, do not issue an error message and, in
 particular, continue in maps as if no error occurred.
[g] Replace all occurrences in the line. Without this argument,
 replacement occurs only for the first occurrence in each line.
[i] Ignore case for the pattern.
[I] Don't ignore case for the pattern.
[p] Print the line containing the last substitute.

Copying and Moving Text

"{a-zA-Z0-
9.%#:-"}

Use register {a-zA-Z0-9.%#:-"} for next delete, yank or put
(use uppercase character to append with delete and yank) ({.
%#:} only work with put).

:reg[isters] Display the contents of all numbered and named registers.
:reg[isters] Display the contents of the numbered and named registers

Linux for beginner : little helper to start with SYMPHONIE 28

http://www.fprintf.net/vimCheatSheet.html#select

{arg} that are mentioned in {arg}.
:di[splay] [arg] Same as :registers.
["x]y{motion} Yank {motion} text [into register x].
["x]yy Yank [count] lines [into register x]
["x]Y yank [count] lines [into register x] (synonym for yy).

{Visual}["x]y
Yank the highlighted text [into register x] (for {Visual} see
Selecting Text).

{Visual}["x]Y Yank the highlighted lines [into register x]
:[range]y[ank]
[x]

Yank [range] lines [into register x].

:[range]y[ank]
[x] {count}

Yank {count} lines, starting with last line number in [range]
(default: current line), [into register x].

["x]p Put the text [from register x] after the cursor [count] times.
["x]P Put the text [from register x] before the cursor [count] times.
["x]gp Just like "p", but leave the cursor just after the new text.
["x]gP Just like "P", but leave the cursor just after the new text.
:[line]pu[t] [x] Put the text [from register x] after [line] (default current line).

:[line]pu[t]! [x]
Put the text [from register x] before [line] (default current
line).

Undo/Redo/Repeat

u Undo [count] changes.
:u[ndo] Undo one change.
CTRL-R Redo [count] changes which were undone.
:red[o] Redo one change which was undone.
U Undo all latest changes on one line. {Vi: while not moved off of it}
. Repeat last change, with count replaced with [count].

Screen movement commands

z. Center the screen on the cursor
zt Scroll the screen so the cursor is at the top
zb Scroll the screen so the cursor is at the bottom

Marks

m{a-zA-Z}
Set mark {a-zA-Z} at cursor position (does not move the cursor,
this is not a motion command).

m' or
m`

Set the previous context mark. This can be jumped to with the
"''" or "``" command (does not move the cursor, this is not a
motion command).

:
[range]ma[rk]
{a-zA-Z}

Set mark {a-zA-Z} at last line number in [range], column 0.
Default is cursor line.

:[range]k{a-
zA-Z}

Same as :mark, but the space before the mark name can be
omitted.

Linux for beginner : little helper to start with SYMPHONIE 29

http://www.fprintf.net/vimCheatSheet.html#select

'{a-z}
To the first non-blank character on the line with mark {a-z}
(linewise).

'{A-Z0-9}
To the first non-blank character on the line with mark {A-Z0-9}
in the correct file

`{a-z} To the mark {a-z}
`{A-Z0-9} To the mark {A-Z0-9} in the correct file
:marks List all the current marks (not a motion command).

:marks {arg}
List the marks that are mentioned in {arg} (not a motion
command). For example:

Searching

/{pattern}[/] Search forward for the [count]'th occurrence of {pattern}
/{pattern}/
{offset}

Search forward for the [count]'th occurrence of {pattern}
and go {offset} lines up or down.

/<CR> Search forward for the [count]'th latest used pattern

//{offset}<CR>
Search forward for the [count]'th latest used pattern with
new. If {offset} is empty no offset is used.

?{pattern}
[?]<CR>

Search backward for the [count]'th previous occurrence of
{pattern}

?{pattern}?
{offset}<CR>

Search backward for the [count]'th previous occurrence of
{pattern} and go {offset} lines up or down

?<CR> Search backward for the [count]'th latest used pattern

??{offset}<CR>
Search backward for the [count]'th latest used pattern with
new {offset}. If {offset} is empty no offset is used.

n Repeat the latest "/" or "?" [count] times.

N
Repeat the latest "/" or "?" [count] times in opposite
direction.

Selecting Text (Visual Mode)

To select text, enter visual mode with one of the commands below, and use motion
commands to highlight the text you are interested in. Then, use some command on
the text.

The operators that can be used are:
 ~ switch case
 d delete
 c change
 y yank
 > shift right
 < shift left
 ! filter through external command
 = filter through 'equalprg' option command
 gq format lines to 'textwidth' length

v start Visual mode per character.

V start Visual mode linewise.

<Esc> exit Visual mode without making any changes

Linux for beginner : little helper to start with SYMPHONIE 30

https://www.fprintf.net/vimCheatSheet.html#motion
https://www.fprintf.net/vimCheatSheet.html#motion

How to Suspend

CTRL-Z
Suspend Vim, like ":stop". Works in Normal and in Visual mode. In Insert
and Command-line mode, the CTRL-Z is inserted as a normal character.

:sus[pend]
[!] or
:st[op][!]

Suspend Vim. If the '!' is not given and 'autowrite' is set, every buffer with
changes and a file name is written out. If the '!' is given or 'autowrite' is
not set, changed buffers are not written, don't forget to bring Vim back to
the foreground later!

Linux for beginner : little helper to start with SYMPHONIE 31

	1. Introduction to LINUX Environment
	1.1 The « root »

	2. Opening a terminal
	3. Some basic command principles in LINUX
	3.1 General definition of a command:

	4. The tree structure :
	4.1 Where are we?
	4.2 How to know what is in the directories :
	4.3 How to move in the directories: relative path and absolute path

	5. Practical use of the console shortcuts
	5.1 The Completion
	5.2 History, command recall and copy/paste with the mouse :
	5.3 The jokers :
	5.4 The Permissions :
	5.6 Handling of files and directories:
	5.7 Viewing and editing files :
	5.8 Text Editor and Co
	5.9 Finding a file: the find command
	5.10 Search for a string : the « grep » command
	5.11 The redirection « > » (and “>>”) and the "pipe" « | »:
	5.12 File archiving and compression:
	5.13 Need help learning more about a command and its options?

	6. Beyond the current Linux command
	6.1 suspend and resume an action :
	6.2 Remote connection
	6.3 See the running processes and how to stop a process:

	7. Checklist of basic commands.
	8. Text editor in the terminal: VI
	8.1 The modes of Vi
	8.2 Basic commands
	8.3 Editing commands
	8.4 Find and Replace

	Vim Commands Cheat Sheet
	How to Exit
	Editing a File
	Inserting Text
	Inserting a file
	Deleting Text
	Changing (or Replacing) Text
	Substituting
	Undo/Redo/Repeat
	Screen movement commands
	Marks
	Searching
	Selecting Text (Visual Mode)
	How to Suspend

