

Wideband Cryogenic Feed Receivers for VLBI

Rémi RAYET Callisto remi.rayet@callisto-space.com

10/03/2017

Our experience:

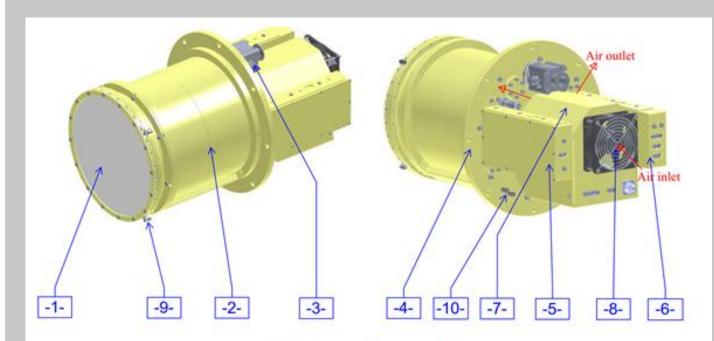
> 20 years experience producing cryogenic LNAs

> 50 systems produced

Customers: ESA, ISRO, CNES, BKG, ZDS, etc...

VLBI developments:

Wideband (2.3—14GHz) cryogenic receiver optimized for VLBI applications (VGOS)


CalTech QRFH feed (Quad-Ridged Flared Horn)

Receiver in 2 models: Compact (NT<40K) and Ultra (NT<20K)

Compact Prototype tested on VLBI antenna in Hobart (TAS) (UTAS/AuScope) + 3 production units

Ultra Prototype being built – installation at BKG's Wettzell observatory by the end of 2017

Callisto Compact QRFH cryogenic receiver

Figure 2-2: Receiver Mechanical Overview

- 1. Large RF vacuum window (RF Input) including radome
- 2. Sealed enclosure (receiver body with feed phase center marker line)
- 3. Vacuum valve
- 4. Base plate (with mechanical interface to antenna structure)
- 5. Post Box, with RF outputs (coaxial SMA connectors)
- 6. Calibration box (optional, for phase and noise calibration)
- 7. Vent box, with a fan providing air cooling to the cryocooler compressor

and containing the cryocooler power controller

- 8. Air inlet port (source supplied by customer (AC for instance); see section 2.13.1.6
- 9. Coaxial SMA connector for Noise antenna probe (located inside the radome). This port is connected to the CalBox.
- 10. Pressurized dry air input and output ports for radome (pressurized dry air provided by customer)

Key features:

NT<40K

(at Dewar window, excluding external noise contributions (Tsky, Tg, Tant).

Very compact

L. 618 mm x ¢. 311 mm <30kg (all included! receiver, cold head, compressor, heat exchanger)

Very low power consumption

(<440W, 20 times less than a conventional cryogenic receiver)

No maintenance

(on cryocooler for at least 5 years of continuous operation)

- Good for operations in remote locations
- Where energy cost is high \geq (production + environmental impact)
- Where maintenance logistics is particularly complex and expensive

Compact QRFH cryogenic receiver

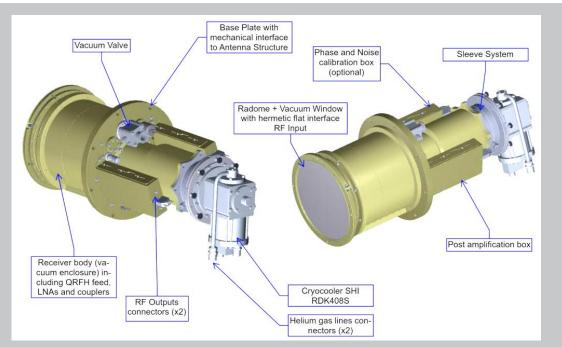
10/03/2017 **4/23**

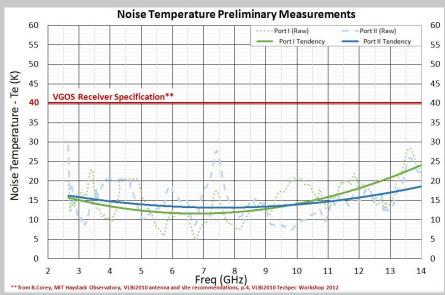
UTAS (Hobart-TAS) 12m VLBI Antenna

. Prototype tests on VLBI antenna

. Mostly issues with mechanical integration:

- .. vibrations transfer to antenna structure,
- .. optical alignment





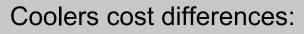
10/03/2017 **5/23**

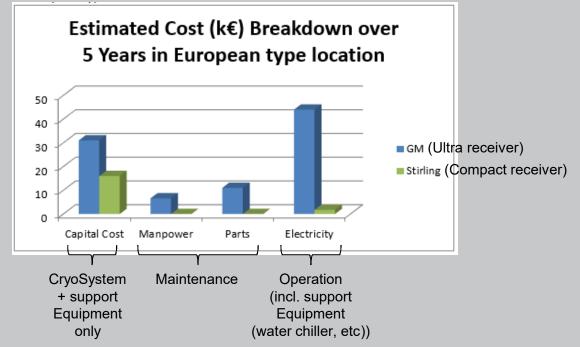
PROPRIETARY INFORMATION - Copyright Callisto 2017

Callisto Ultra QRFH cryogenic receiver

Key features:

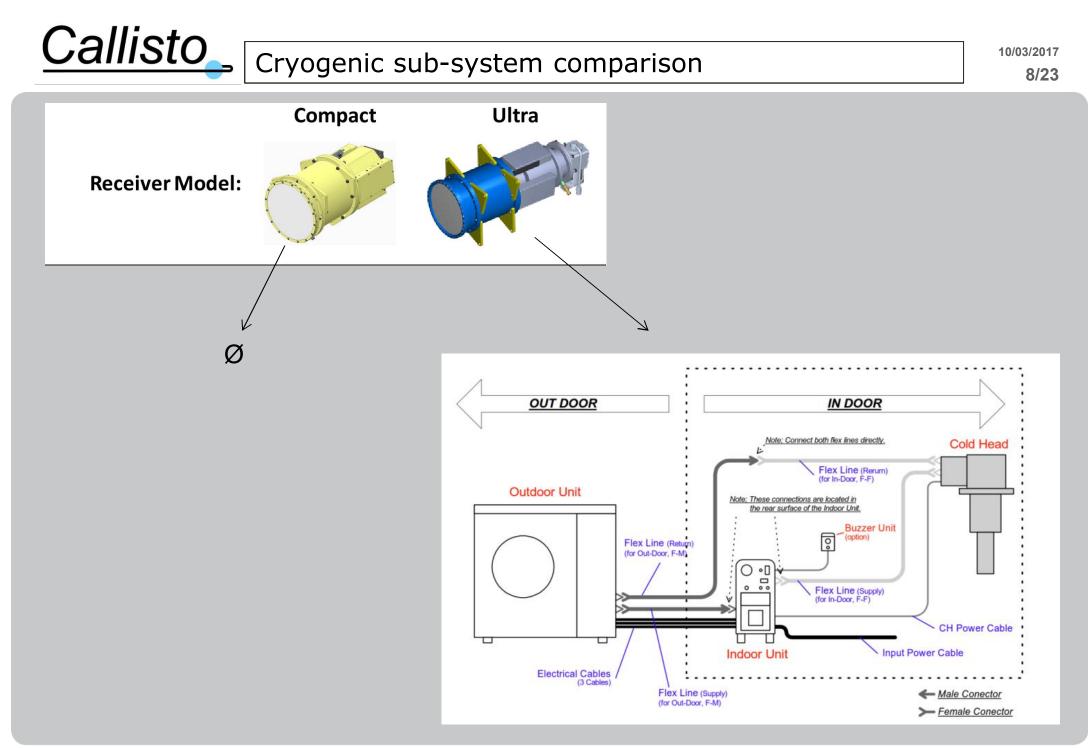
NT<20K


Simplified cold head service


- \checkmark No need for receiver dismounting from the antenna
- ✓ No receiver opening for dismounting full cold head
- ✓ No need for receiver realignment after cold head service
- ✓ Very fast cold head replacement by spare (<30 minutes when receiver at room temp.)
- Very best NT performance
- Users with no particular constraints on electrical consumption and regular maintenance

PROPRIETARY INFORMATION - Copyright Callisto 2017

Cryogenic sub-system cost comparison



Coolers environmental impact:

	Ultra CryoLNA (GM)	Compact CryoLNA (Stirling)
Equivalent Carbon Footprint (oil consumption for electricity generation over 10 years : 893g(CO2-eq)/kW.he) [6])	391 tons	15.6 tons

PROPRIETARY INFORMATION – Copyright Callisto 2017

10/03/2017 **7/23**

PROPRIETARY INFORMATION – Copyright Callisto 2017

10/03/2017 9/23

. "Quad-Ridged Flared Horn", CalTech Design, wideband RF feed (2—14GHz)

. Compact, Aluminium design \rightarrow good for cryogenic cooling

= complexity \lor , cost \lor , reliability \urcorner

. Standard feeds delivered by Callisto compatible with Patriot, Intertronic Solutions, MT Mechatronics and Vertex 12m telescopes

. Custom designs of QRFH feeds can adapt other frequency ranges, on-demand

. Only 2 LNAs required

. 2 linear polarizations outputs

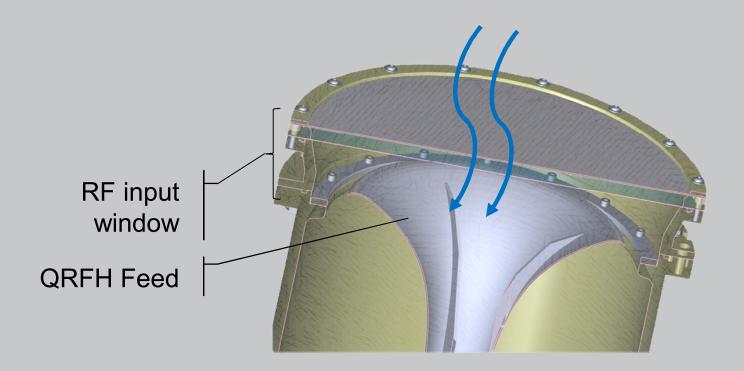
10/03/2017 **10/23**

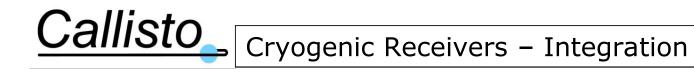
. Unique, patented thermal insulation system for cryogenic RF receivers

- . Solid thermal insulation
- . High vacuum
- \rightarrow no need for high vacuum pumping before cooling!
- \rightarrow only rough vacuum (~1mbar)
- (simple scroll pump operating for few minutes,
- no need of turbo pump)

. Compact Receiver:

- \rightarrow sealed at factory
- \rightarrow no vac. pump for cooldown
- \rightarrow vacuum recycling for few minutes once a year or less often

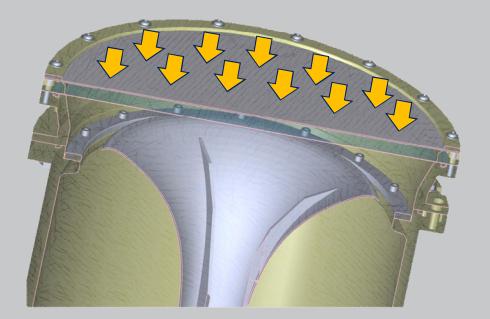

. Ultra Receiver: \rightarrow after cold head replacement for service



. <u>Critical point</u>: RF input window of the receiver

Must be at the same time:

→ Transparent + low loss RF 2—14GHz

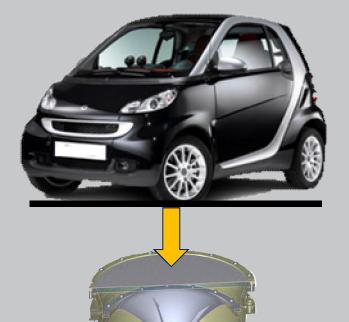


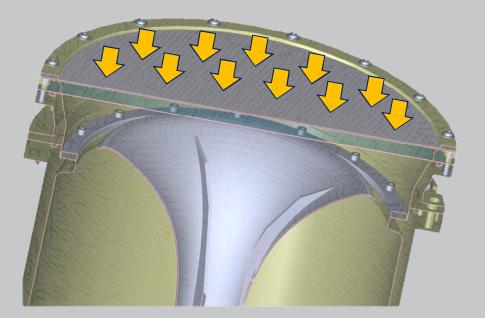
10/03/2017 **12/23**

. <u>Critical point</u>: RF input window of the receiver

Must be at the same time:

- → Transparent + low loss RF 2—14GHz
- → Robust to support large mechanical loads due to Atmospheric pressure (~700kg!)


10/03/2017 **13/23**


. <u>Critical point</u>: RF input window of the receiver

Must be at the same time:

→ Transparent + low loss RF 2—14GHz

→ Robust to support large mechanical load due to Atmospheric pressure (~700kg!)

. <u>Critical point</u>: RF input window of the receiver

Must be at the same time:

- → Transparent + low loss RF 2—14GHz
- → Robust to support large mechanical load due to Atmospheric pressure (~700kg!)

10/03/2017 **14/23**

 \rightarrow Hermetic: isolate internal volume from atmospheric gases

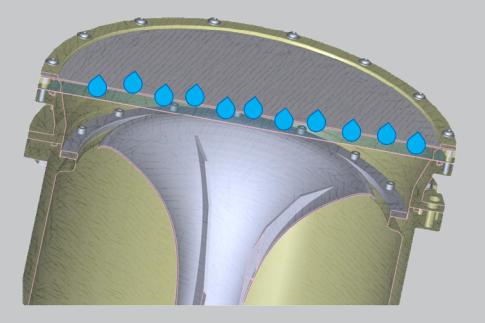
. <u>Critical point</u>: RF input window of the receiver

Must be at the same time:

- → Transparent + low loss RF 2—14GHz
- → Robust to support large mechanical load due to Atmospheric pressure (~700kg!)

10/03/2017 **15/23**

- \rightarrow Hermetic: isolate internal volume from atmospheric gases
- → Filter infrared heat loads to prevent from reaching the cryo parts


10/03/2017 **16/23**

. <u>Critical point</u>: RF input window of the receiver

Must be at the same time:

- → Transparent + low loss RF 2—14GHz
- → Robust to support large mechanical load due to Atmospheric pressure (~700kg!)
- \rightarrow Hermetic: isolate internal volume from atmospheric gases
- \rightarrow Filter infrared heat loads to prevent from reaching the cryo parts

→ Prevent moisture condensation on window (RF attenuation)

. <u>Critical point</u>: RF input window of the receiver

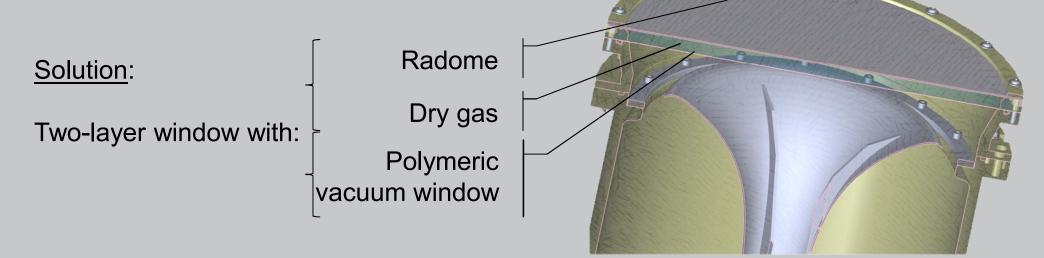
Must be at the same time:

- → Transparent + low loss RF 2—14GHz
- → Robust to support large mechanical load due to Atmospheric pressure (~700kg!)

10/03/2017 **17/23**

- \rightarrow Hermetic: isolate internal volume from atmospheric gases
- \rightarrow Filter infrared heat loads to prevent from reaching the cryo parts
- → Prevent moisture condensation on window (RF attenuation)

 \rightarrow Weather proof! (rain, wind, dust, hail, UV...)

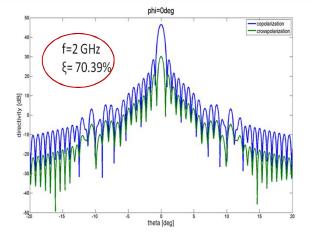


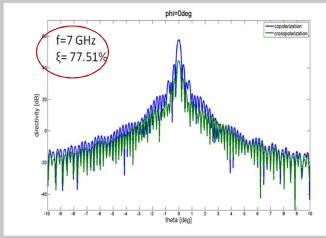
10/03/2017 **18/23**

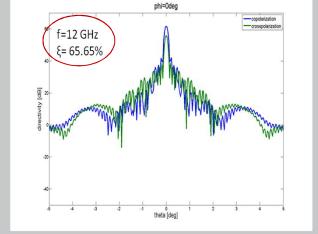
. <u>Critical point</u>: RF input window of the receiver

Must be at the same time:

- → Transparent + low loss RF 2—14GHz
- → Robust to support large mechanical load due to Atmospheric pressure (~700kg!)
- \rightarrow Hermetic: isolate internal volume from atmospheric gases
- \rightarrow Filter infrared heat loads to prevent from reaching the cryo parts
- → Prevent moisture condensation on window (RF attenuation)
- → Weather proof! (rain, wind, dust, hail, UV...)


10/03/2017 19/23

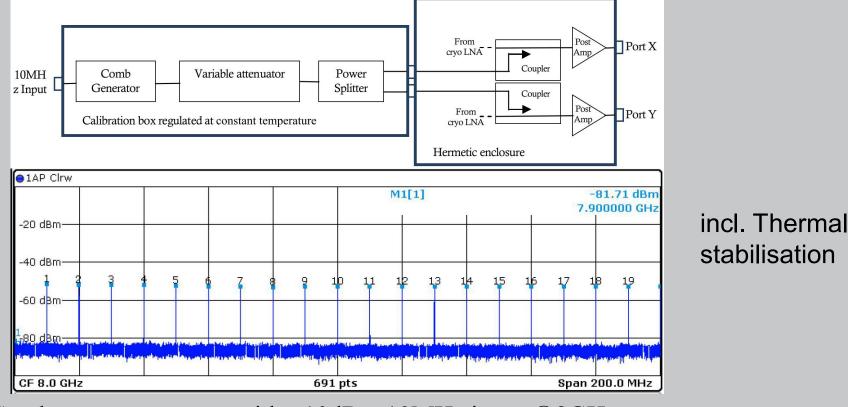

. Fundamental to design the input interface


Engineering: . Internal dimensions of input interface . Dimensions and materials of input window

- \rightarrow Minimal impact on QRFH radiation patterns
- \rightarrow Best compromise thermal performance and mechanical robustness
- \rightarrow 3DEM simulations of the QRFH receiver input interface \rightarrow Radiation patterns

Radiation patterns \rightarrow input for GRASP model of 12m Patriot antenna \rightarrow Performance impact at antenna level: Co/Cross Polar + Antenna efficiency

PROPRIETARY INFORMATION – Copyright Callisto 2017



10/03/2017 **20/23**

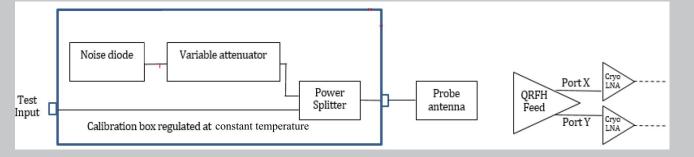
. Generate a comb spectrum signal up to 14GHz with spectral lines at 10MHz spacing

. Lines are derived from an input reference frequency signal provided by the user

. Use couplers placed after the cryogenic LNAs inside the enclosure (for compact) → reduced impact on critical NT

Comb generator output with +10dBm 10MHz input @8GHz

PROPRIETARY INFORMATION - Copyright Callisto 2017



10/03/2017 **21/23**

. Inject two levels of noise in the QRFH receiver in order to do a noise measurement using the Y-factor method

- . Noise generated by Noise diode
- . Level of noise set using a variable attenuator

. Compact receiver: Probe antenna designed to optimize the coupling with the QRFH feed while being integrated within the large vacuum window and under the protection of the radome

incl. Thermal stabilisation

10/03/2017 **22/23**

	Compact	Ultra
Receiver Model:		
Frequency Band	2-14GHz	
Noise Temperature (at receiver input flange)	<40K	<20K
Gain	>33dB	
Other RF features	. Phase & Noise calibration (standard or optional)	
Operation Type	Continuous	
Cryocooler type	Stirling	Gifford-McMahon (GM)
Receiver Dimensions	L. 612 mm x φ. 311 mm	L. <1 m x φ. 311 mm
Receiver Weight	<25kg (<u>all included</u> :receiver, cryocooler, compressor, heat exchanger)	<50kg (<u>includes</u> receiver, cryocooler, sleeve system); <u>exludes</u> compressor, gas lines, heat exchanger)
Mean time between services	No Service required	10,000 hours (~14 months)
Mean time <u>to failure (MTTF)</u>	200,000 hours	Non Specified
Power Consumption (max)	400W	8000W
Unique Features	No vacuum pump required for operations (not required for cooldown)	Sleeve system : cold head removal for service without dismounting receiver from the antenna
Monitoring & Control	Drawer + Software (running on industrial PC) for local and remote M&C	
Other Options	Installation support, training course, warranty extension	

Compact:

- Good for operations in remote locations
- Where energy cost is high (production + environmental impact)
- > Where maintenance logistics is particularly complex and expensive

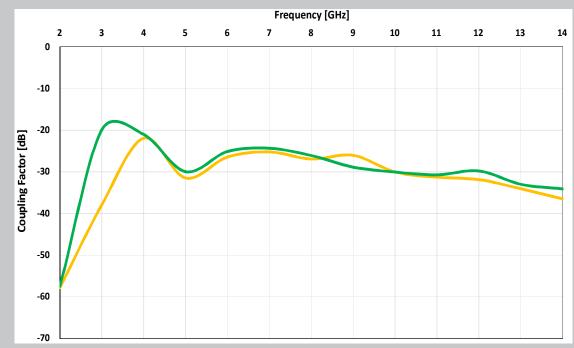
<u>Ultra</u>:

- Very best NT performance
- Users with no particular constraints on electrical consumption and regular maintenance

10/03/2017 **23/23**

Thank You!

PROPRIETARY INFORMATION - Copyright Callisto 2017



. Also used to optimize coupling noise injection antenna probe vs QRFH

→ Wideband patch antenna (included in receiver window, protected by radome)

Included in HFSS model:

Optimised position of the antenna probe \rightarrow min. coupling: -35 dB = 2.5--14 GHz and 3.2--14 GHz for the two QRFH input ports

PROPRIETARY INFORMATION – Copyright Callisto 2017

. VLBI relies on accurate measurement of phase and delay

. Calibration signals can be used to measure, and hence correct for, instrument time and frequency variations of phase and delay

. Both receivers have CalBox

. Contains components for phase and noise calibration of the QRFH and LNAs RF path

. CalBox has solid thermal insulation + temperature control → thermal stability of RF components

. CalBox fits on base plate of receiver