

Altimétrie spatiale

PART II : Vers l'altimétrie de nouvelle génération : du LRM au SAR, altimétrie large fauchée et diffusiométrie radar

Jean-Claude SOUYRIS

Service Altimétrie et Radar

Centre National d'Etudes Spatiales (CNES)

Cones Cones

IGN

🕬 🚛 🚛 🔞 🖉 👘 👘 🚛 le cnam 🕬

- Du LRM (Low Resolution Mode) au SAR (Synthetic Aperture Radar)
- L'illumination cohérente et l'interférométrie
- La physique de la mesure de SWOT
- Diffusiométrie radar vent et vagues (exemple de SWIM sur CFOSAT)

¢ cnes

cnes

FROM NADIR TO WIDE-SWATH ALTIMETRY OBSERVATION ANGLES

Courtesy Alain Mallet, CNES

October 1th to 5th 2012

De l'OBSERVATION nadir à La large fauchée

Imaging radar geometry

... What if radar were not in slant range ?

A and B are ambiguous (discrimination based on range mesurement)

... and the reflected energy propagates in a direction which is not the one of the radar !

... Only a limited amount of energy is backscattered towards the radar →critical power budget

De l'OBSERVATION nadir à La large fauchée

→ Illumination Off-Nadir

SAR Image synthesis in action

Range Compression

Resolved Image

Wide Swath Altimetry for HR oceanography

OCEANOGRAPHIE HAUTE RESOLUTION

Existant : ~ qq cm sur 7 km x 7 km

RADARSAT - December 26, 1998

TTVS

10 km

Wide Swath Altimetry for hydrology

HYDROLOGIE CONTINENTALE 1m 2 à 10 m 10m à 60m CNES - All rights reserved Existant : ~ qq cm sur 7 km x 7 km **TTVS**

Coherent versus incoherent illumination

For coherent illumination, the in-phase photonic vibration allows for the use of the radar signal phase information

Cnes

Coherent Illumination, non coherent illumination ... On the spartan organisation of the radar wavelength !

Radar illumination (or laser)

Natural illumination

Coherent Illumination, non coherent illumination ... On the spartan organisation of the coherent wave !

Radar (or laser) illumination COHERENT

Natural illumination INCOHÉRENT

The phase of the coherent wave

Phase (i.e. vibration state) of <u>one</u> photon =

Same as the phase of <u>any photon</u>

→ We can define the
« Phase of the wave »,
as the phase state common
to every photon of the wave.

Rayonnement radar (ou laser)

The phase state is a function of

the distance **R** covered by the wave

Phase of the wave > Phase of the radar signal

The wave Phase is « wrapped » by the radar measurement

Coherent Illumination: the phase of the radar wave

The phase of the radar signal (**MODULO** 2π) takes the same value at two locations separated by the range λ (wavelength)

Coherent Illumination: the phase of the radar wave

... Actually : the range $\lambda/2$ when accounting for the round trip distance

Can we infer the range **R** from the knowledge of the phase ϕ ?

... Quite difficult, as it would require to determine the number N of $\lambda/2$ segments over the range R very precisely

Ex : Bande Ka : $\lambda/2=4 \text{ mm} \rightarrow \text{N}=\text{R}/(\lambda/2) \sim 1000 \text{km}/4 \text{ mm} \sim 2.10^8$

... and moreover to assume that neither the <u>atmosphere</u> nor the <u>wave / surface</u> interaction corrupt the phase

jhts reserved

Principle of interferometry

- Each image pixel contains two terms:
 - Amplitude: A
 - Phase:

$$\varphi_{pixel} = \varphi_{specific} + \varphi_{R}$$

も

Pixel = A . $e^{j\phi}$

 $arphi_{specific}$ (wave / surface interaction cannot be estimated)

$$\varphi_{R} = \frac{4\pi}{\lambda}R$$

Absolute phase cannot be used as information

Principle of interferometry

 If two images with unchanged ground conditions

$$\varphi_{specific _1} = \varphi_{specific _2}$$
$$\Delta \varphi = \varphi_2 - \varphi_1 = \varphi_{R_2} - \varphi_{R_1}$$
$$\Delta \varphi = \frac{4\pi}{\lambda} (R_2 - R_1)$$

Image of $\Delta \varphi$ = interferogram = image of distance differences

$$\Rightarrow \Delta \varphi$$
 varies of 2π (one fringe)

Principle of interferometry

Radar signal measurement / Phase measurement

Transmission

1 image pixel = I + j. Q (complex number) = radiometry + phase A a a signal is a « two-layers » signal, including a radiometric layer and a phase layer

Interferometric Radar chain

Sensibilité topographique et baseline interférométrique

Baseline / wavelength : B/λ (= 1000)

Iso-altitude line (r₁-r₂)

→ Height measurement

Sensibilité topographique et baseline interférométrique

Baseline / wavelength : B/λ (= 2000)

Iso-altitude line $(r_1 - r_2)$

→ Height measurement

Sensibilité topographique et baseline interférométrique

- Sensibilité topographique \nearrow qd : B/λ

•
$$B/\lambda$$
 7 qd : λ 4 (plus facile que 7 B ! – longueur mât)

→ Transition Bande Ku vers Bande Ka (Gain en sensibilité : 2.6)

... En bénéficiant de l'héritage AltiKa

SWOT (couverture / résolution)

cnes

SWOT geometry : The territory of uncharted incidences ... and « singular » frequencies

SWOT physics : challenging the contrast between water and soil ...

Water response mixed with forest response

with forest response

LAYOVER \nearrow when $\theta \searrow$

 $f_{2n} = \frac{1}{2} f_{2n} = \frac{1}{2} f_{2n}$

© CNES - All rights reserved

DEM -2m 56m Layover zones

 f_{2n}

Layover zones

Lay-over impact reduced tks to strong Water / Land contrast

© CNES - All rights reserved

Cones

0 0

¢ cnes

Courtesy Alain Mallet, CNES

TTVS

© CNES -

TTVS

¢cnes

SWOT geometry seen from the engeneering team)

Ccnes

¢ cnes

Coping with satellite salsa

CNES - /

KaRIn instrument on SWOT : heritages

- SRTM "Shuttle Radar Topography Mission"
 - \bigcirc C band and X band, 60 meters mast
 - \bigcirc 10 days acquisition in 2000 → global DEM

- WSOA instrument considered for JASON2
 - \bigcirc Ku band, 7 meters mast

Cones

Cones

KaRIn on SWOT

Acquisition geometry / Ocean height error performances

TTVS

→ Vertical accuracy : if it is not enough ...

Group on N pixels

$$\sigma_z = \frac{\sigma_{\varphi}}{2.\pi} . Ea \cdot \frac{1}{\sqrt{N}}$$

Trade-off between planimetric resolution and altimetric accuracy on N pixels

SWOT FOR OCEANOGRAPHY AND HYDROLOGY (NASA / JPL – CNES, 2020) INTEFEROMETRY FOR WATER AREAS !

Spacecraft characteristics:

- Platform : 1,3 m3
- Mass: <u>1250 kgs</u> (P/L : 550 kgs, P/F: 650 kgs)
- Power: <u>1750 W</u> (<u>P/L: 1200 W</u>, P/F : 400 W, TMI : 150W)
- Solar Array: <u>25/ 30m²</u>
- P/L TM rate : 290 Mb/s
- P/L Mass memory: 7 Tb

Wave and Wind scatterometry

Wind Scatterometer : principle

As the wind blows over the ocean, the surface is roughened by the generation of capillary waves. These, in turn, modify the surface backscatter (reflected signal or echo) properties.

Wind Scatterometer : wave impact

¢ cnes

Wind Scatterometer annuary

Projects	SEASAT	ERS-1 ERS-2	NSCAT	ASCAT	SeaWinds
Launch	1978	1991,1994	1996	2006	1998/2000
Frequency	14.6 (Ku)	5.3 (C)	13.995 (Ku)	5.3 (C)	13,4 (Ku)
pace resolution (km)	20x60	50x50	25x25	50x50	50 x 50
Swath (Km)	2x500	1x500	2x600	2x500	1800
Antennas	4	3	6	6	1 (2 faisceaux)
tennas Dimensions(m)	0.15x2.3	0.4x3.6	0.15x3	0.4x4	Ø 1 m
Polarization	VV,HH	VV	VV,HH	VV	?
Peak power (W)	110	5000	120	120	110
Pulse length	4.8 ms	100 μs	5 ms	6 ms	?
Altitude (km)	800	780	820	800	820
Mass (kg)	102	270	235	175	200
Consumption (W)	136	531	275	277	200

¢ cnes

ASCAT / METOP

Cones

NSCAT / ADEOS

SeaWinds / QuikScat

Wave scatterometry

C Different kinds of waves corresponding to different sea states

- Wind Sea
- Swell
- Mixed sea conditions

C Radar scatterometer

Cones

TTVS

C Directional wave spectrum

Distribution of the waves heights with regards to:

⊂ their wavelength

 \subseteq their propagation direction

Sea state information through wave characteristics

How to characterize the waves with a radar?

Sea surface: case with no waves

Sea surface: small waves (low heights, short wavelength)

Cones

C Received power depends:

Cones

- On large slopes (waves)
- But also on surface roughness (generated by winds)

C Received power depends only on waves around 8° of incidence !

CFOSAT mission

CFOSAT: China France Oceanography SATellite

Oceanographic mission for sea surface monitoring

- Wave and wind measurements
- Backscattering profile

Mission mainly dedicated to:

- Oceanography
- Meteorology
- Climatology

- Two payloads:
 - SWIM: wave scatterometer (Surface Wave Investigation and Monitoring)
 SCAT: wind scatterometer
- Orbit
 - Altitude = 519 km
 SSO (13 days repeat cycle)
- Mission : 3 years duration

ecnes

SWIM wave scatterometer

- C Measurement of the backscattering coefficient σ^0 in all incidence angles (from nadir to 10°)
- Wave spectrum
 - Modulation depends only on waves around 8° of incidence (use of incidence beams 6°, 8° and 10°)
 - Directional wave spectrum using 360° scans
- Measurement of SWH from nadir echo

Fiche instrument SWIM / CFOSAT

DCT/SI/AR

e cnes

Orbit
 Sun synchronous
 Local time at descending node
 AM 7:00
 Altitude at the equator
 519 km
 Cycle duration
 13 days

Satellite mass and dimensions
 Mass

 600 kg
 Primary structure
 1.4mx1.4mx1.2m

CFOSAT

cnes

SWIM instrument

SWIM characteristics

Mass

100 kg (including antenna = 50kg) **Consumption** 220W **Science telemetry data rate** 1Mbit/s

Technological challenges

- Antenna mechanism (RMA)
- On board processing (ASIC)
- Antenna on-board calibration
- Platform interfaces (CAN Bus, LVDS)
- SCAT compatibility

Session 2011 du 19 au 23 septembre et du 21 au 25 octobre

Techniques et Technologies des Véhicules Spatiaux

SWIM : 6 FAISCEAUX AVEC DES ANGLES D'INCIDENCE VARIANT DE O° À 10°.

cnes

SWIM: 6 BEAMS, INCIDENCE ANGLES FROM O° TO 10°.

CF

TTVS