Actual gradiometer measurement

Actual Accelerometer output

1/2

Actual gradiometer measurement

2/2

Proof-Mass motion:

 $m_{I_{A}} \stackrel{?}{X}_{A} ? \stackrel{?}{X}_{A} \stackrel{?}{?} m_{g_{A}} g_{A} ? F_{A} ? F_{p_{A}}$ $= > \frac{Accelerometer A Output}{\frac{\hat{F}_{A}}{m_{I_{A}}} ? ? ? ? K_{A} ? F_{A} ? E ? F_{A} ?? E_{n_{A}}}$

Difference of 2 accelerometer measurements:

$$\frac{\hat{F}_{A}}{n_{I_{A}}}?\frac{\hat{F}_{B}}{m_{I_{B}}}??\hat{X}_{A}?\hat{X}_{B}??\hat{X}_{A}?K_{B}?\frac{\hat{X}_{A}?\hat{X}_{B}}{2}$$

$$?\frac{\hat{Y}_{A}}{?}x_{A}?\hat{X}_{B}??2?\hat{Y}_{A}?K_{B}?\hat{Y}_{B}??\hat{X}_{A}?\hat{X}_{B}???\hat{Y}_{B}?\hat{Y}_{B}?\hat{Y}_{B}??}\hat{Y}_{B}??\hat{Y}_{B}??\hat{Y}_{B}??\hat{Y}_{B}??\hat{Y}_{B}??}\hat{Y}_{$$

- ∠ (1) Common mode acceleration
- ∠ (2) Proof-masses relative motion
- ✓ (3) Difference of Gravity field effects
- ✓ (4) Non gravitational acceleration
- 🧭 (5) Instrument

🖞 DMPH

A drag-free satellite: a request for space gradiometry to reduce \ddot{X}_{ii} ?,?

- Drag-Free system composed of :
- + Accelerometers or Inertial mass and position sensing (sensors)
- + Propulsion system (actuators)
- + Control laws of servo-loop (attitude and orbit)
 - Sensor : High sensitivity and stability
 - Electric or Cold gas propulsion :
 - ? Low thrust
 - ? Fine continuous (or not) control for manoeuvres
 - ? Linearity and low thrust noise

GOCE : Attitude and Drag Control architecture (2/2)

Compensation of S/C external forces and torques: atmospheric drag, radiation pressure, magnetic, gravity gradients... (associated with fine attitude pointing) to obtain a pure gravitational orbit @ low altitude to preserve fine instrumentation from disturbing acceleration

GOCE Attitude and Drag Control GOCE

System Requirements depending on instrument calibration

GOCE specifications

Linear acceleration	: 5.10 ⁻⁷ m/s ² (maxi),	< 2.5-10 ⁻⁸ ms ⁻² /?Hz (mbw)
Angular acceleration	: 10 ⁻⁶ rad/s ² (maxi),	< 1.5-10 ⁻⁸ rads ⁻² /? Hz (mbw)
Angular velocity	: 10 ⁻⁵ rad/s (maxi)+orbital y	< 10 ⁻⁶ rads ⁻¹ /? Hz (mbw) along x,z
	and	d < 5·10 ⁻⁷ rads ⁻¹ /? Hz (mbw) y
Searth Pointing	: 0.5 mrad (maxi)	< 2.10 ⁻⁵ rad/? Hz (mbw)

Low flying altitude (250 km / 2.10⁻⁵ ms ⁻² drag) drives:

- redundant system for the 'nominal' modes (measurement and thrusters)
- Two propulsion technologies : Ion thrusters and FEEP/Cold Gaz fine thrusters

GOCE : Attitude and Drag Control Performances

ONERA

m/s²?Hz

Pointing requirement: 8.6-10⁻⁶ rad/?Hz fulfilled ? (2 mE?Hz) Drag control requirements: 2.5-10⁻⁸ m/s²?Hz fulfilled ? (0.9 mE?Hz)

9

One-axis Gradiometer sensitivities

septembre 2002 2 - Pierre Touboul - Ecole d'été Géodésie spatiale

Calibration Approach:

Many reference frames ! Positions ! Alignments !

(1/3)

RGP=Real Gradiometer Pair (frame linked to the accelerometer centers)

> GP=Gradiometer Pair (frame linked to the structure)

Calibration principle:

✓ to shake the instrument at well known frequency, phase and direction

✓ to observe common and differential outputs

DMPH

Calibration Approach: 2 possible technics

(2/3)

ARISTOTELES

(ESA mission cancelled in 1993)

Independent calibration device to provide well known accelerations along/about absolute reference frames

Linear and angular shaking

Quality of the shaker = quality of the calibration

GOCE

Accelerometers are used to control the shaking of the satellite, with thrusters also used for DFC (servo-loop)

 Linear and angular shaking along accelerometer reference frame with accelerometer performance
 no need of a specific device

GOCE calibration is less demanding for the instrument and the satellite example: perpendicularity of linear shaking ~ 10⁻² rad in GOCE, instead of 5.10⁻⁶ rad in ARISTOTELES !!!

septembre 2002 2 - Pierre Touboul - Ecole d'été Géodésie spatiale

Ground verification: Scale factor matching

Test bench shaking at low freq.

- Pierre Touboul - Ecole d'été Géodésie spatiale - 2 septembre 2002

Scale factor matching versus frequency

(
 higher gravity field spherical harmonics to be measured)

Scale factor difference versus frequency

10% of relative error on constant time

1% of relative error on constant time

- ✓ necessity of very plat frequency low
- calibration in measurement bend width

12

Effects of accelerometer non linearities

Instrument non linearities due to : - acceler

- accelerometer electrostatic

- operationelectronics non linearities

Induced high frequency signal aliasing (satellite/instrument structure behaviour, environment fluctuations, thrusters...)

Model with quadratic and cubic non linearities ? acc² and acc³ Quadratic non linearity sensitivity : calibrated in orbit and corrected Cubic non linearities and decimation : limited by design and environment control

Aliasing

$$|H^{1Hz}|^{2}\frac{3}{2}|H^{10Hz}_{d}|^{2}? \stackrel{?}{}_{a_{c}}? |H^{10Hz}_{c}|^{2}? \stackrel{?}{}_{a_{d}}? H^{10Hz}_{d}(p)? \stackrel{}{}_{a_{c}a_{d}}H^{10Hz}_{c}(?p)? H^{10Hz}_{c}(p)? \stackrel{}{}_{a_{d}a_{c}}H^{10Hz}_{d}(?p)\frac{3}{2}$$

Differential cubic aliasing due to error between accelerometer (geometric and electronic)

Parameter	Symbol	Value
Relative error on mass of the proof-mass	?m/m	7 10 ⁻⁴
Relative error on surface of electrode	$?S_c/S = ?S_d/S$	10-3
Relative error of gap	?e/e	3 10 ⁻³
Relative common error on polarisation voltage	V_{pc}/V_{p}	10 ⁻⁵
Relative differential error on polarisation voltage	$?V_{pd}/V_p$	2.10^{-3}
Relative capacitive sensor bias	y_0/e	4.5 10 ⁻⁵
Common error on amplifier gain	Gm_c	10-3
Differential error on amplifier gain	$?Gm_d$	10-4
Error on DVA bias	? V _c ???V _d	10^{-3} V

Common: 5.30 1014 V.s4/m3

Differential: 6.64 1012 V.s4/m3

Rejection of high frequency: accelerometer loop

STAR measurements

- 15 - Pierre Touboul - Ecole d'été Géodésie spatiale - 2 septembre 2002

STAR measurements

Grégory Pradels 12/00

Gradiometer accuracy

Soft and study environment: orbit + satellite + instrument case

Differential measurement & rejection of non gravity sensor signal:

- Concept + configuration
- *«* Structure + positionning + alignment
- *⊯ Calibration* + *linearity*

K Gravity field measurement accuracy:

- Accelerometer sensitivity
- Data processing

Accelerometer main features

- Proof mass : motion and attitude servo-controlled
- Capacitive position sensor
- Electrostatic actuators
- ∠6 degrees of freedom measurement

The capacitive sensor

To optimise :

∠ the resolution

- ∠ the bias stability
- ✓ the rejection of stray capacitance
- ∠ the force back action

GRADIO configuration

Scale factor :	50 V/pF (i.e. 2.4 10 ⁴ V / m)
Resolution :	1.2 10 ⁻⁷ pF / Hz ^{1/2} within 5.10 ⁻³ Hz to 100 Hz
	i.e. 5.10 ⁻¹² m / Hz ^{1/2} for 300 µm gap
	and compatible with 10 ⁻¹³ N / Hz ^{1/2}

Sensor Core

- ✓ ULE material
- Øptical grinding
- *Ultrasonic* machining
- **Gold coating (sputtering)**
- Clean room integration
- 🧭 micromys, arcsecond

Accelerometer Output model

Most updated Budget concerning Accelerometer noise GOCE

STAR Accelerometer for CHAMP Mission

demonstration of GRADIO accelerometer concept and technology but much larger range 10⁻³ms⁻² and so less resolution

Major specifications

- ∠ Measurement Range 10⁻³ m.s⁻²
- \swarrow Meas. bandwidth 10⁻⁴ Hz 10⁻¹ Hz
- ∠ Resolution 3 10⁻⁹ m.s⁻² rms
- Integration period 1 second digital output 19 bits + sign
- ∠ Mass 9.7 kg (SU+EEU) 3.0 kg (ICU)
- ✓ Volume 13 litres (SU+EEU) 4 litres (ICU)
- ∠ Power 6.8 W
- ∠ Launched on july 15, 2000
- From switch / on, continuous operation in Orbit

ONERA

septembre 2002 2 . Pierre Touboul - Ecole d'été Géodésie spatiale

26

🕺 DMPH

STAR / CHAMP : in flight thermal variations induced by X3

Accelerometer Specification Overview

Orbit 480 km (\), 89°

SuperSTAR

- ✓ Measurement range 5 10⁻⁵ m.s⁻²
- ✓ Bandwidth 5 10⁻⁵ Hz 4 10⁻² Hz
- ✓ Noise S(f)=10⁻²⁰(1+5 10⁻³/f) m².s⁻⁴.Hz⁻¹
- \swarrow Bias C₀ < 2 10⁻⁶ m.s⁻²
- \swarrow Scale factor C₁=1.0 +/- 2%

Herre Toubout Here Toubout Herre Toubout Herre Toubout Herre Toubout Herre

28

septembre 2002

2

GRACE Mission : first day data

Model and actual measurement comparison GRACE mission

Preliminary analysis from Texas University

ONERA

Space Gradiometry & Future Geodesie

Section Section

Instrument present STATUS

- ✓ Definition phase (B): Review April 2002
- ✓ Starting of production phase (C/O): July 2002

Launch expected at early 2006

Cryogenic gradiometry

with

- ∠ higher resolution accelerometer
- schigher drag-free satellite performance
- Satellite Satellite tracking: GRACE follow-on

with

- ∠ drag-free satellite
- *⊯* lower altitude *∞*
- *⊯* laser ranging

References

- [1] http://op.gfz-potsdam.de/champ/
- [2] http://www.csr.utexas/grace/
- [3] http://www.esa.int/export/esaLP/goce/
- [4] http://www.onera.fr/dmph/accelerometre/

END

