

Ecole d' Eté 2014

Space altimetry

SCALE INTERACTIONS IN THE GLOBAL OCEAN: SYNERGIES BETWEEN ALTIMETRY, MODELLING, AND DYNAMICAL THEORIES

Thierry Penduff, CNRS

Equipe MEOM (Modélisation des Ecoulements Océaniques à Multi-échelle) Laboratoire de Glaciologie et Géophysique de l'Environnement, Grenoble

Thanks to Mélanie Juza, Guillaume Sérazin, Sandy Grégorio Bernard Barnier, Jean-Marc Molines, and DRAKKAR colleagues

Cones

(bservatoire ())

📕 le cnam 🕼

Context

Physical oceanography: studying the motions and physical properties of ocean waters
 Main sources of oceanographic information today :

Context

Physical oceanography: studying the motions and physical properties of ocean waters
 Main sources of oceanographic information today :

GRGS Ecole d'Eté 2014

- 1 Altimetry Sea-level Surface circulation
- 2 Models Resolution and processes
- 3 Variability [2° vs 1/4°] models vs AVISO
- 4 North Atlantic scale interactions Intrinsic variability
- 5 Conclusion Perspectives

① Altimetry : Sea-level, geostrophic currents

Time delays \rightarrow SSH

 $SLA(x, y, t) = SSH(x, y, t) - \overline{SSH}(x, y)$ is provided (AVISO) it is associated with the variable part of the geostrophic circulation : geostrophic velocity *anomalies* V_g' are // to SLA contours.

Because of the Earth's rotation Ω , ocean currents away from the equator are in *geostrophic balance* at scales larger than a few days and a few tens of km: **surface geostrophic velocity vectors** V_g are parallel to SSH contours (iso-pressure).

1 Sea-level: mean SSH, mean geos. currents

① Sea-level: AVISO SLA(x,y,t)

AVISO SLA(x,y,t) dataset

- every week since 1992
- ~100 km scales
- quasi-global

Limitations

- No small scales
- Vertical integral
- No data under sea-ice
- Allows a global monitoring of the ocean variability over a wide range of scales (from mesoscale to climate-relevant scales)
- revolutionized oceanographic research, and gave birth to operational oceanography

① Sea-level: observable processes

GRGS Ecole d'Eté 2014

Fu & Ubelmann JAOT 2014

① Sea-level: observable processes

Fu & Ubelmann JAOT 2014

① Sea-level: observable processes

① Sea-level observations... and below?

The ocean circulation is generally strongest at the surface, but has a complex vertical structure, strongly coupled to the 3D temperature and salinity structures.

Outline

1 Altimetry — Sea-level — Surface circulation

2 Models — Resolution and processes

3 Variability — [2° vs 1/4°] models vs AVISO

4 North Atlantic scale interactions — Intrinsic variability

5 Conclusion — Perspectives

② Ocean models

A model is a mathematical system that represents a physical process, or an ensemble of interacting processes.

Conceptual models

- Simplified dynamics
- Idealized geometry, forcing, etc

To study a given ocean process in an idealized setting for an in-depth understanding of its dynamics

Realistic Models ("virtual ocean")

- Most complete dynamics
- Most realistic geometry, forcing, etc

To represent many dynamical processes simultaneously, and the actual ocean circulation with maximum accuracy

Conceptual and realistic models fruitfully complement observations : quasicontinuous 4D multivariate description of the ocean state, dynamical scenarios, dominant processes, sensitivity experiments, multiple realizations...

② Ocean models

Circulation Model, OGCM) is a software that solves the primitive equations on a discrete mesh.

🛸 X (east)

② Ocean models: primitive equations

<u>7 unknowns</u> u,v,w,p,T,S,ρ depending on (x,y,z,t)

				Advec tion	Geostrophy	Forcing, Dissip.		
<u>7 equati</u>	ons :	zonal	$\partial u / \partial t =$	<i>₌ –<u>u</u>.∇u</i>	+ $fv - p_x / ho_0$	$+F_u + D_u$	(1)	1
	Momentum	meridional	$\partial v / \partial t =$	± <u>−u</u> .∇v	- $fu - p_y / \rho_0$	$+F_{v}+D_{v}$	(2)	
	equations	vertical	$p_z = -\rho g$					(hydrostatic)
Mass conservation equation			$u_x + v_y + w_z = 0$			(4)	(continuity)	
Temperature and salinity equations		$\partial T / \partial t = -\underline{u} \cdot \nabla T + F_T + D_T$			(5)			
		$\partial S / \partial t = \underline{-u} \cdot \nabla S + F_S + D_S$ $\rho = \rho(T, S, P)$			(6)			
Equation of state					(7)			
<u>Bounda</u>	ry							
conditions Bottom		Bottom	$W_{bot} = -\underline{u_h} \cdot \nabla_h H$				No flow through ocean topography	
+ Initial		$\frac{\partial \eta}{\partial t} = -\nabla [(H + \eta).\overline{\underline{u}_h}] + P + R - E$			(sea level, freshwater)			

Surface heat flux, momentum flux (wind stress)

Conditions

2 NEMO model: SLA (no data assimilation)

② Ocean models: resolution

Fine resolution \rightarrow more fine scales

- ➔ Weaker dissipation (less viscosity)
- → Stronger nonlinear (advection) terms
- → Larger Reynolds Number (adv/visc)
- ➔ Turbulence & scale interactions

$$\begin{array}{l} \partial u/\partial t = -\underline{u}.\nabla u + fv - p_x / \rho_0 + F_u + D_u \\ \partial v/\partial t = -\underline{u}.\nabla v - fu - p_y / \rho_0 + F_v + D_v \end{array}$$

$$p_z = -\rho g$$

② Ocean models: resolution & processes

② Ocean models: resolution & processes

2) Ocean models: resolution & processes

Inside boxes : resolved processes Outside ____ : parameterized AVISO SLA(x,y,t) global ocean model **-** 2° 1/12° global ocean model

② Ocean models: resolution & processes

Inside boxes : resolved processes
Outside _____: parameterized _____

- AVISO SLA(x,y,t)
- 2° global ocean model
- 1/12° global ocean model
- Is the simulated « climatic » SLA variability more realistic, or different, when eddies are explicitly simulated ?
 → [2° vs 1/4°] models vs AVISO
- What does this comparison tell us about the role of eddies in the real ocean climate ?

1 Altimetry — Sea-level — Surface circulation

2 Models — Resolution and processes

3 Variability — [2° vs 1/4°] models vs AVISO

4 North Atlantic scale interactions — Intrinsic variability

5 Conclusion — Perspectives

③ Variability: [2° vs 1/4°] models vs AVISO

Comparing 3 SLA(x,y,t) datasets over 1993-2007

AVISO	1/3°	1993-2007
ORCA2	2 °	1958-2007
ORCA025	1/4°	1958-2007

Atmospheric forcing:

- Based on ERA-40 (all air-sea fluxes)
- Identical in both simulations

25

③ Variability: [2° vs 1/4°] models vs AVISO

Filtering the 3 SLA(x,y,t) datasets into « climatic » and « eddy » signals. Using 1D and 2D Lanczos low-pass filters Small-Largescale scale Low-**LFLS** frequency 18mths 8mths High-HF SS frequency 6° 12°

How do ORCA2 and ORCA025 represent the observed « climatic » variability ?

- Distribution
- Strength
- Phase agreement

26

③ Typical SLA scales in a turbulent model

③ Mesoscale variability: models vs AVISO

③ Mesoscale variability: scale interactions

Scale interactions:

1) LS \rightarrow SS: Baroclinic instability Large-scale $\nabla T, \nabla SSH$

- \rightarrow Geostrophic current \rightarrow gets unstable
- \rightarrow Meanders \rightarrow Mesoscale eddies

2) LS ← SS: Turbulent heat flux

Warm eddies into cold waters Cold eddies into warm waters Large-scale ∇T , ∇SSH and current: reduced

③ « Climatic » variability: models vs AVISO

14.00

13.00

12.00

11.00

10.00

9.00

2.00

00 6.00

00 5.

3.00

2.00

1.00

0.00

00

③ « Climatic » variability: models vs AVISO

Despite largely improved dynamics and solution when mesoscale eddies are present, the « climatic » SLA variability is better correlated with AVISO at 2° resolution.

> Is LFLS variability more « noisy » in ORCA025

13.00

12.00

11.00

10.00

9.00

00

80

00

é

5.00

00

00

00

1.00

00.0

СIJ

③ (Regional) SLA trends: models vs AVISO

How well do numerical models ?

Greatbatch, 1994: ocean models conserve mass instead of volume (Boussinesq approximation)

- → Globally-averaged SLA trends $\overline{\overline{T}}^{x,y}$ are inexact in models
- $\rightarrow \overline{\overline{T}}^{x,y}$ must be computed and removed from AVISO and simulations
- → AVISO and models are compared in terms of **Regional SLA trends** :

$$T'_{SLA}(x,y) = T_{SLA}(x,y) - \overline{\overline{T}}^{x,y}$$

See Lombard et al, Ocean Dynamics (2009)

③ (Regional) SLA trends: models vs AVISO

$$T'_{SLA}(x,y) = T_{SLA}(x,y) - \overline{\overline{T}}^{x,y}$$

Large-scale patterns:

AVISO ~ ORCA025

See Lombard et al, Ocean Dynamics (2009)

③ (Regional) SLA trends: models vs AVISO

 $T'_{SLA}(x,y) = T_{SLA}(x,y) - \overline{\overline{T}}^{x,y}$

Large scales only

AVISO ~ ORCA025 ~ ORCA2

Increased resolution does not improve the large-scale patterns of SLA trends

- Consistent with their mainly steric (thermodynamic) origin
- Mostly controlled by surface heat / freshwater fluxes
- ➔ Eddies do not impact large scale trend

AVISO

ORCA2

See Juza, (2011)

③ Below the surface: models vs Argo T/S(z)

-2000

-0.5

0.5

Biais de temperature

1.5

remain. Interpreting SLA dynamics (& biases) requires subsurface information

0.15

0.25

36

-2000 -0.15

-0.05

0.05

Biais de salinite

2.5

1 Altimetry — Sea-level — Surface circulation

2 Models — Resolution and processes

3 Variability — [2° vs 1/4°] models vs AVISO

4 North Atlantic scale interactions — Intrinsic variability

5 Conclusion — Perspectives

④ North Atlantic Oscillation: atmosphere

NAO index: normalized atm pressure difference (Portugal – Iceland)

NAO captures a large part of the Interannual atmospheric variability over the North Atlantic. Impact on SLA at LFLS & HFSS scales?

④ North Atlantic Oscillation: LFLS SLA

Colors : mean barotropic streamfunction Contours : NAO⁺-NAO⁻ tripolar anomaly

REALISTIC 1/6° CLIPPER MODEL (Penduff et al, JPO 2004)

(4) North Atlantic Oscillation: HFSS SLA

(4) North Atlantic Oscillation: not only cause

High resolution \rightarrow **LF intrinsic variability** ΔEKE (this slide) Penduff et al 2004 Intergyre heat flux Hall et al 2004 SLA at all scales Sérazin et al (submitted)

- SST at all scales
- Atlantic overturning (MOC) Grégorio et al (submitted)

④ Intrinsic LF variability : chaotic character

(4) Intrinsic LF variability (idealized models)

④ Inverse cascades of KE (space and time)

Idealized 2-layer QG simulation with constant forcing spontaneously generates chaotic variability at both Mesoscale and « climatic » scales

(Arbic et al, JPO 2014)

eddy

sizes

(4) Inverse cascades of KE (space and time)

- 1 Altimetry Sea-level Surface circulation
- 2 Models Resolution and processes
- 3 Variability [2° vs 1/4°] models vs AVISO
- 4 North Atlantic scale interactions Intrinsic variability
- 5 Conclusion Perspectives

Conclusion

Realistic simulations

- Are evaluated & improved using altimetry
- Tend toward altimetry as resolution increases (...but temporal decorrelation)
- Are virtual oceans \rightarrow sensitivity experiments \rightarrow understanding observations
- - \rightarrow testing theories

Physics

Scale interactions: instabilities, turbulent fluxes, LF intrinsic variability

Locally up to 100% 100% 50%

- **Mesoscale:** LF oceanic variability is Forced * Intrinsic (SLA, SST, MOC, ...) No mesoscale: Forced ~ Ø
 - Strong LFLS intrinsic variability in eddying regions

Perspectives

1. Chaotic character of the « climatic » ocean variability

- Processes ? 3D observational imprints ?
- Coupled models: Impact on atmosphere, climate ? biogeochemistry ?

2. Anticipating future satellite observations (SWOT2020, ocean color, etc)

- Kilometric processes at work in 3D ? observable from space ?
- Interactions with « Climatic » time/space scales ?

Study OGCM runs with dynamicists & observationalists → CHAOCEAN project Probabilistic studies with ensemble simulations → OCCIPUT project Towards kilometric realistic simulations → DRAKKAR consortium

OCCIPUT: probabilistic ocean modelling

sossheig series during 1993 1997 in GS

References

- Rio, M. H., S. Guinehut, and G. Larnicol (2011), New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements, J. Geophys. Res., 116, C07018, doi:10.1029/2010JC006505
- Fu, L.L and C. Ubelmann: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography, Journal of Atmospheric and Oceanic Technology, 2013
- Djath B., Melet A., Verron J., Molines J.-M., Barnier B., Gourdeau L., and Debreu L. : A 1/36 degrees model of the Solomon Sea embedded into a global ocean model: on the setting up of an interactive open boundary nested model system. Journal of Operational Oceanography, 7(1), 34-46, 2014
- Marshall, J., H. Johnson, J Goodman, 2001: A Study of the Interaction of the North Atlantic Oscillation with Ocean Circulation. J. Climate, 14, 1399–1421.
- Hall N., Barnier B., Penduff T., Molines. J.M.: Interannual variation of Gulf Stream heat transport in a high resolution model forced by reanalysis data, Climate Dynamics, Climate Dynamics, 23, 341-351, 2004.
- Sérazin, G., T. Penduff, L. Terray, S. Grégorio, B. Barnier, and Jean-Marc Molines : Spatial scales of the low-frequency intrinsic sea-level variability: a global model study. J. Climate, submitted.
- Grégorio, S., T. Penduff, G. Sérazin, J. Le Sommer, J.-M. Molines, and B. Barnier : Intrinsic variability of the Atlantic Meridional Overturning Circulationat interannual-to-multidecadal timescales. J. Phys. Oceanogr., submitted.
- Pierini, S. (2014). Kuroshio extension bimodality and the north pacific oscillation : a case of intrinsic variability paced by external forcing. Journal of Climate, 27 :448–454.
- Hazeleger, W. and Drijfhout, S. (2000). A model study on internally generated variability in subtropical mode water formation. J. Geophys. Res., 105(C6) :13,965–13,979.
- Hogg, A. M. and Blundell, J. (2006). Interdecadal variability of the southern ocean. J. Phys. Oceanogr., 36(8) :1626–1645.
- Arbic, B.K., M. Müller, J.G. Richman, J.F. Shriver, A.J. Morten, R.B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency-wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 2050–2069. doi:10.1175/JPO-D-13-054.1
- Penduff, T., Barnier B., Dewar W.K., O'Brien. J.J., Dynamical response of the oceanic eddy field to the north Atlantic oscillation: a model-data comparison. J. Phy. Oceanogr., 34(12), 2615-2629, 2004.
- Penduff, T. M. Juza, and B. Barnier, 2007: Assessing the realism of ocean simulations against hydrography and altimetry. Clivar Exchanges, No 42 (vol 12 No 3), 11-12.
- Penduff, T., M. Juza, L. Brodeau, G.C. Smith, B. Barnier, J.-M. Molines, A.-M. Treguier and G. Madec, 2010 : Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci., 6, 269–284.
- Penduff, T., M. Juza, B. Barnier, J. Zika, W.K.Dewar, A.-M. Treguier, J.-M. Molines, and N. Audiffren, 2011: Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 5652–5670. doi: 10.1175/JCLI-D-11-00077.1.
- Lombard, A., G. Garric, and T. Penduff, 2009 : Regional patterns of observed sea level change: Insights from a 1/4° global ocean/sea-ice hindcast. Ocean Dynamics, 59, 3, 433-449.
- Juza M, 2011: Modélisation numérique et observations de l'océan global: développement des interfaces, évaluation de simulations et de réseaux d'observations, investigations dynamiques. Doctorat de l'Université J.Fourier, 15 septembre 2011.

