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Least squares: a review

Part of this section is based on lecture notes by Prof. Werner Gurtner, 
in particular figures and formulas. 

Contents
• 1. The mathematical model of an adjustment
• 2. Least squares
• 3. More general adjustment methods
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Least squares: A review
Repeated measurements of one and the same object (e.g., 

length of a rod) show that measurements contain errors, 
where the distinction is made between
– blunders
– Regular or systematic errors
– Irregular or random errors

If the differences between the measurements are far above the 
expected precision of a method, one speaks of blunders.

Systematic errors always influence a measurement in the same 
sense, e.g., instrument errors, environmental influences, 
parallaxes).

Random errors are based on the imperfection of the 
measurement process. They have to be treated statistically 
(keyword: expectation values, variances).

The total error consists of the sum of all random errors and of all 
systematic errors.

An outlier may be a random error with very small probability or a 
blunder – the treatment of outliers is based on experience (!).  
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Least squares: A review
Random variables and their characteristics:

– A random or stochastic variable is a function, assigning a distinct real 
value to each result of a random experiment.

– The probability that a random variable X assumes a value x is denoted 
by P(X=x). 

– The probability for X assuming a value in the interval (a,b] is denoted by 
P(a < X ≤ b).

Probability function F(x):
The probability function F(x) provides the probability that X assumes 

values  ≤ x:

)

F(x) grows monotonically. 

F(-”infty”) = 0, F(+”infty”) = 1

P(a < X ≤ b) = F(b) – F(a)
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Least squares: A review

The probability density function f(x) is the first derivative w.r.t x of the probabilty
function, i.e., f(x) = F’(x).

Properties:
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Least squares: A review
Parameters of a distribution: 
Expectation values E(x) or mean values µ for continuous and 

discrete variables:

Parameters of a distribution: 
Standard deviation σ and/or variance for continuous and discrete 

variables:
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Least squares: A review

The variance is a special case (for k=2) of central moments of order k:

For the variance we have the following important relationship:
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Least squares: A review

Gaussian or normal distribution:
Introduced by C.F. Gauss (1777-1855) in the context of the 

theory of measurement errors. It is the most frequently used 
distribution in practice, because:
– Many random variables encountered in practice are normally 

distributed.

– The sum of many arbitrarily distributed random variables results 
in good approximation in a normal distribution.

A normal distribution with σ =1 and µ = 0 is a standard normal 
distribution.

The probability density function of a normal distribution reads as:
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Least squares: A review

χ2 Distribution: The sum of the squares of n independent normally 
distributed random Variables Xi, i=1,2,…, n (with σ =1 and µ = 0)
is called χ2

The probability distribution of this new random variable is called Chi-
square distribution. The corresponding probability density is:

The χ2 distribution has mean value µ = n and  variance σ2 = 2n.
The χ2 asymptotically is normally distributed with µ = n und σ2 = 2n.
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Least squares: A review

For statistical tests we may formulate the following 
Theorem: Let: 

– Xi, i=1,2,….,n normally distributed random variables with mean values µ 
and variance σ2.

– An empirical estimation of the mean value and the corresponding 
variance is obtained by:

where the random variable Z is χ2 distributed with degree of freedom 
f=n-1:
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Least squares: A review

The mean value and the variance are also called parameters of a 
distribution (there are others).

From a sample of n elements these parameters may be estimated. The 
corresponding formulas are called estimators.

We thus define functions U = g(X1,X2,...,Xn) of the random variables Xi.
These functions in turn are random variables with own probabilty

distributions and parameters.
An estimator is called unbiased, if its expectation value equals the 

expectation value of the corresponding parameter (defined by its
density function).

The empirical estimators for mean and variance on the previous page 
are unbiased.

An estimator is called consistent, if its expectation value converges to 
the true value for large values n. 
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Least squares: A review

Probability distribution with more than one random variable: Often one 
has to deal not only with one random variable X but with several, e.g., 
with measuring pressure and temperature, latitude and longitude,
coordinates of a point in E2 or E3, etc. One thus has to define the 
probability that (X,Y,...) assume at maximum the values (x,y,...):

F(x,y,..) is the distribution function of the multi-dimensional distribution 
of the random variables (X,Y,...). 

In two dimensions the density function f(x,y) is defined by:

The probability for the values (x,y) lying in a rectangle is defined by:
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Least squares: A review
Covariances: The following definitions are provided for dimension 2. A 

generalization to higher dimensions is evident.
The variance σ2 of a sum of two random variables is:

from where:

σxy is the covariance of the random variables X and Y.
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Least squares: A review

The correlation coefficient of X und Y is defined by:

Estimators for covariance and correlation coefficient:

ρ und r may assume values between –1 and +1:
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Least squares: A review
Independence: Two random variables are called independent, if 

for all (x,y):
F(x,y) = Fx(x) Fy(y).

From where we may conclude
f(x,y) = fx(x) fy(y).

For independent random variables we have:
E(XY) = E(X) E(Y)

Implying that the covariance is
σxy = 0

Consequently the correlation coefficient is:
ρ = 0

Implying that independent random variables are uncorrelated.  
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Least squares: A review

Error propagation: Let XT = (X1, X2, ..., Xn) a random vector for 
which all variances und and covariances are known. The 
corresponding information is conveniently reported in the 
covariance matrix:

Let ZT = (Z1,Z2,...,Zm) a linear function of X:
Z = C · X,

where C is a matrix with m rows and n columns. The covariance matrix  
Kzz of Z simply is:

Kzz = C · Kxx · CT

If the functional dependency of X und Z is not linear, a linearization 
must take place before!
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Least squares: A review

Covariance and co-factor matrix: If the vector X corresponds to a 
series of independent measurements, Kxx is diagonal.

If all measurements have the same  variance σ0
2, we have 

Kxx = σ0
2 · E,  E = Identity matrix.

Even if this is not true, it makes in general sense to use one 
measurement as unit (let us assume with variance σ0

2). 
The matrix Qxx, obtained from Kxx by division by σ0

2 is called matrix 
of cofactors: 
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Least squares: A review
Weights: Let XT = (X1, X2, ..., Xn) a random vector of independent 

random variables with µ=0 and variances (σ1, σ2, ... , σn,). Its 
covariance matrix Kxx is diagonal, with Kxx(i,i) = σi

2.
With ZT = (σ0/σ1 X1, σ0/σ2 X2, ..., σ0/σn Xn) we define a random vector 

with: Kzz = σ0
2 · E. 

Obviousy Kzz = P · Kxx with P diagonal [Pii = pi = ( σ0/σi )2]. 

pi ist the weight of the random variable with No. i.
If the covariance matrix is not diagonal, the weight matrix is defined by:
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Least squares: A review

In order to determine parameters from observations (measurements) we 
need:
– A functional model of the observations, i.e., the functional dependence of 

the observed quantities from the parameters to be determined,
– the statistical model of the observations as well as
– a statistical criterion to estimate the parameters.

The measured quantities Li are treated as random variables. Their 
statistical properties are described by their covariance matrix, where 
σi

2 is the variance of observation Li , σik the covariance of observations 
Li and Lk: 
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Least squares: A review

Adjustment of intermediate observation equations represents the n
observed quantities Li as functions of u parameters Xi : 

Alternatively, the method of conditioned observations introduces  r < n 
condition equations between the observations, which have to be 
met precisely. The n observations assume the role of parameters. 
The condition equations may be written as:
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Least squares: A review

In practice adjustment with intermediary observations is much more 
frequently met than adjustment based on condition equations.

Criterion of parameter estimation is needed whenever the number n of 
observations exceeds the number u of parameters. 
– n > u is no luxury:

• Outliers may be identified and eliminated.
• Results become more accurate.
• The accuracy of results may be estimated.

– Adjustment wants to obtain, with small corrections (residuals), applied 
to the observations, a system of u linear equations for the u 
parameters. 

– Several criteria have been proposed:
• Minimize the largest residual (Tschebyscheff)
• Minimize sum of residuals (Laplace), L1 norm
• Minimize sum of residuals square  � Method of Least Squares (LSQ), 

(Gauss), L2 norm.

Question: How to establish an L1-norm with LSQ (poor (wo)man’s
solution)?
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Least squares: A review

Left: Portrait of C.F. Gauss, Right: Orbit determination & 
improvement – probably the first application of LSQ. In 
addition first orbit determination is discussed.
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Least squares: A review

Method of least  squares:
v is the vector of residuals to be added to the observations ℓ, P

ℓℓ
the 

weight matrix associated with the observations. The LSQ criterion in 
its most general form asks to minimize the weighted sum of 
residuals:

where:

With independent observations the covariance matrix K
ℓℓ

becomes 
diagonal, in consequence also the matrices Q

ℓℓ
und P

ℓℓ
. The 

diagonal element pi of P
ℓℓ

is the weight of observation No. i:

The LSQ criterion is then reduced to:
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Least squares: A review

Justification of LSQ:
– With normally distributed observations one obtains the parameters 

with the highest probabilities.

– Independent of the distribution of the observations one obtains 
parameters of maximum accuracy. 

– The results are easily calculated (toolkit of linear algebra). 
– LSQ qives plausible results (e.g., arithmetic mean when measuring a 

quantity n times with the same method).

Classical LSQ dealt with independent measurements. Helmert
(around 1900), Tienstra (around 1950) and others have 
generalized LSQ to correlated observations.
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Least squares: A review

Each observed quantity ℓi is written as a function of the parameters xi : 

ℓi =  F(x1,...,xu)  ,    i = 1,...,n
in matrix notation written as:

L  =  F(X)
Due to the measurement errors the actual measurements ℓi’ may not be 

met exactly. This why the quantities vi, associated with each of the 
observations are introduced to exactly meet the observation EQs:

where ℓ’ stands for the actual observation, the same symbol with bar for the 
adjusted observation, v for the array of residuals, and x (with bar) for the 
estimated parameter array.
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Least squares: A review

Adopting the LSQ criterion (left with correlations, right without) implies:

The minimum is assumed, if the partial derivatives of the left-hand 
side of the above condition w.r.t. to all u parameters are zero:

Assuming that the observational EQs are linear in the parameters, 
they may be written in the form:

…..
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Least squares: A review

We thus obtain the normal equation system (NEQs) with u EQs and u
parameters:

In matrix notation:        N·x - f  =  0
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Least squares: A review

N·x - f  =  0
is called NEQs, N normal equation matrix. N is a quadratic, symmetrical 

and positive definite matrix.
With a fully populated weight matrix the NEQs is obtained by

The solution of the NEQs reads as:
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Least squares: A review
Mean errors of the parameters: With the supposedly known covariance 

matrix of the observations one my derive the covariance matrix of 
the parameters using the law of error propagation:

With the inverted NEQ matrix Qxx and with the standard deviation σ0 of 
the observations the mean errors, the covariances and correlation 
coefficients between the parameters may be calculated.

The covariance matrix of linear functions of the parameters may be 
computed as well.
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Least squares: A review

Mean error a posteriori of weight unit: The LSQ estimate of σ0 is 
computes as:

wobei:

The following formula is important, because it provides m0 without 
the need to explicitly calculate the residuals:
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Least squares: A review

Note that ATP ℓ’ = f is the RHS of the NEQs, which is why: 
vTPv = ℓ’TP ℓ’ – xTf

When summing up the NEQs, one only has to calculate in addition   
ℓ’TP ℓ’ to be able to use the above formula. 

If the elements of ℓ’ are large in absolute value, numerical problems 
may occur.

Non-linear observation equations have to be linearized prior to the 
adjustment. The success depends on the quality of x0.

�
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Least squares: A review
When dealing with linearized observation EQs one was to replace the 

observations by the difference “observations – observed functions 
calculated with the a priori parameter values”:

where:

The elements of ℓ’ - ℓ0 are given the attribute observed – computed.
Matrix A is called the first design matrix.
The linearization process neglects the terms of the higher than the first 

order in the parameter increments. 
�

The parameter estimation problem in principle has to solved iteratively.

In practice one tries to use high quality a priori values allowing for a 
solution in one iteration step.
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Least squares: A review

Test of the mathematical model: The ratio of the variances a posteriori 
and a priori may be used for this purpose (n and u are the numbers 
of observations and parameters, respectively):

z is a random variable with degree of freedom n-u and a chi-square 
distribution, implying that the following random variable has a chi-
square/(n-u) distribution and expectation value 1:

For n-u >> 1 the ratio should be close to 1. If this is not the case one 
either has outliers in the system or the mathematical and/or 
statistical model describing the observations is inadequate. 
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Least squares with conditions
Adjustment of intermediate observation equations with conditions

between parameters: A linear(ized) system of n observation equations 
is augmented by r<u linear condition equations between the 
parameters.

The condition equations might be used to eliminate r parameters. The 
resulting system is, however, often difficult to handle.

The combined system may be written as:

or
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Least squares with conditions
The weighted sum of residuals squares must be minimized, where r

conditions have to be met exactly. The following minimum principle 
does the job (kc is the array of r Lagrange multipliers):

The system may be brought into a form looking like a NEQs:

The partial derivatives w.r.t. all parameters and multipliers have to be 0:
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Least squares with conditions

The mean error of the weight unit is given by:
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Least squares with conditions

There are practical problems associated with LSQ with conditions: 
– The number of parameters grows with the number r of scalar condition 

equations. This may be cumbersome if r is a big number.
– A modified minimum principle has to be applied.

There is a “poor woman’s/man’s solution” to this problem. Instead of 
asking the condition equations to be met precisely, we may
– interpret the condition equations as observation equations
– form a NEQ system from these NEQs using a diagonal (or even unit) 

weight matrix
– superimpose this “artificial” NEQ scaled with a big scaling factor (σ0/σ1)

2

to the NEQ resulting from the “real” observations.

This alternative is in practice in most cases “good enough”. (The 
Austrians would say “passt”).

It is an advantage of this poor woman’s/man’s solution that the number 
of parameters is not growing and that the conventional LSQ 
formulas apply!
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Pre-elimination of parameters

Large-scale adjustment problems often may be split up in 
separate parts, with part-specific and general parameters.

When, e.g., determining the gravity field of the Earth in daily 
batches (daily NEQs) using kinematic satellite positions as 
observations the gravity field parameters are general in 
nature, the orbit parameters part-specific.

The complete NEQ including all parameters has the following 
structure:
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Pre-elimination of parameters

The solution of such problems is simple: 
– Let us focus on the part i of the NEQs and pre-eliminate the parameters 

y i. 
– Provided that matrix Mi is regular, the following procedure works and 

and results for each part in a reduced NEQ.
– Eventually, all reduced NEQs have to be superimposed: 
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LSQ Collocation

In practice one often encounters the problem that the observed functions cannot 
be represented with measurement accuracy with a “still reasonable” number u
of parameters xi, i=1,2,...,u of a deterministic model.

Collocation works with interim over-parameterization: Two new parameters, 
namely the „si“ and the noise „ni“ are introduced for each measurement.

If n is the number of actual measurements we end up with u + 2 n parameters (!).

In the above figure the symbols „o“ represents the actual measurements, the  
dotted line the deterministic model, and the blue solid line the „deterministic 
model + signal“.
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Collocation

The observation EQs assume the form
A x + s + n = w, where w = ℓ’ – F(x01, x02, ... x0u ).

The observation EQs would be those of intermediary adjustment, 
if “s” and “n” are replaced by “-v”.

Introducing matrix B the observation EQs may be written as:     
B v + A x – w = 0 , where 
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Collocation

The “observation equations” must hold precisely and therefore should 
be called condition equations. The weighted sum of residuals shall 
be minimized under the additional n conditions that the observation 
equations hold precisely:
vT P v + 2 k (B v + A x -w) = min

The 2n elements of v and the u elements of x are the parameters. 
k is the array of Lagrange multipliers. They are in principle “not 

interesting”, but have to be determined in order to calculate the 
parameters of interest. 

The partial derivatives of the above EQ w.r.t. all elements of arrays v
and x gives the following system of  2n+u scalar EQs:

P v + BT k = 0
AT k           = 0

P is the weight matrix, the inverse of the covariance matrix C of v.



44Ecole d’Eté 2012

Collocation

If matrices Css and Cnn are regular, matrix P = C-1 is regular, as well. 
We may therefore express v with 2n elements by the vector k (with 
n elements) :

v = - P-1 BT k = - C BT k
Using this result in the observation EQs we obtain:

- B C BT k + A x – w = 0 � k = (Css + Cnn)-1 (A x - w)

and eventually:
AT (Css + Cnn)-1 A x = A T (Css + Cnn)-1  w

Assuming that s und n are independent, we have:
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Collocation

The previous result is formally identical to an adjustment of n inter-
mediate observation equations with weight matrix P = Czz

-1 = 
(Css+Cnn)-1. 

x may be determined by resolving the previous equation and one easily 
shows that s and n may now be determined, as well:

or
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Collocation

The matrices Css und Cnn decide about the separation of noise and 
signal.

Note that this separation is not required, if one is only interested in 
the deterministic parameters x.

How does one obtain the matrix Czz? The following method is often 
encountered in practice:
– The parameter estimation problem is solved conventionally with the 

method of intermediary observations without signal and noise parts.

– By analyzing the residuals, one determines an empirical covariance 
function Czz .

Assuming equidistant observations the expectation values 
E(r(t)·r(t+k∆t)) of the residuals r(ti) at times are formed as:  

E(r(t) r(t+k∆t)) = Σ ri ri+k / (n-k), 
where the sum has to include the indices i=1,2, ...,n-k. 
If the observations are not equidistant, “distance classes” must be 

formed
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Collocation

The (symmetric) empirical covariance matrix reads as:

The first line of this matrix contains the so-called empirical covariance 
function, referring to epochs k ∆t, k=0,1,2,...,n-1, where n is the 
number of observations.

The upper diagonal part of line j contains the first n-(j-1) values of the first 
line.

The other elements are obtained by exploiting the symmetry of the matrix.

2
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From LSQ to Kalman Filtering

1. Introduction
2. Deterministic filtering
3. The dynamical system equations
4. Two versions of the filter algorithm
5. Adding the stochastic component � the true Kalman filter 
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Introduction
So far we assumed:

– All observations are available prior to the adjustment.

– The system is described explicitly by linear EQs.
– The functional model of the observed functions is deterministic.

We first drop the first two, but not the third assumption.
We assume that the observations become available one after the 

other, as a function of time, and that the parameters shall be 
determined after each measurement epoch t, using all the 
measurements available up to t. The measurements shall be 
determined using the LSQ method.

A single parameter determination is thus replaced by a parameter 
estimation process in time. Let us furthermore assume that
– the measured functions are described in the most general case by a 

particular solution of a non-linear ordinary DEQs

– and that the parameters define a particular solution of the DEQs. 
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Introduction

The dynamical system is described by the function x(t) = x(t;x0) of 
time t. x(t) has d elements (parameters) x0i , i=1,2,...,d. 

x(t) = x(t;x0) is the state vector of the system at time t).
At epochs tj a vector function y(x(tj)) is measured. The function has d’

elements, where usually d’ << d.
The task might be generalized by allowing for different kinds and 

numbers of measurements at each epoch. We abstain from this 
generalization. 

The parameter estimation process in time shall give at a particular 
time t the best possible estimate of the state vector x(t) using all 
observations available up to this point in time.

It goes without saying (which is why it is said) that the best possible 
use shall be made for the estimate at tj of the estimate at tj-1.
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Introduction

The state vector of the system x(tj;x0), which is a function of x0, shall 
be estimated of each tj . 

For the time being we will estimate x0 using LSQ.
At time tj the distinction is made between three tasks:

– Filtering at tj: Determine x(tj;x0) using all measurements lk’ , k=1,2,....,j
up to tj.

– Prediction at tj: Determine x(tj;x0) using all measurements lk’ , 
k=1,2,....,j-m up to tj-m , m>0.

– Smoothing at time tj: Determine x(tj;x0) using all measurements lk’ , 
k=1,2,....,j+m up to tj-m , m>0.

Filtering, prediction and smoothing at tj are also called estimations.
Note that filtering at the last epoch t=tn coincides with the classical “en 

bloc”LSQ solution of the parameter estimation problem.
Subsequently, we will uniquely deal with filtering.
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Introduction
Let us write the observation EQs in their usual form:

l j’ + v j = y(x(tj;x0)) , j=0,1,2,...N‘ (4.1) , where 
– t time, 
– tj measurement epoch No j , 

– l j array of measurements at tj ,

– d’ dimension (length) of array lj’ ,
– x(tj;x0) state vector of the system at tj ,

– x0 state vector at t0 , parameter array,

– d dimension of x and x0

– v j array of residuals at tj, and

– N=N‘+1 total number of measurement epochs.

In general  y(...) is a non-linear function of the state vector x(tj;x0), 
which is in turn a non-linear function of x0 . 

If d’ =1, N = n is the number of observations (measurements). In 
general we have n = d’ N. 
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Introduction
Assuming that computation time (cpu) is no issue we may solve each 

filter problem conventionally, i.e., using the LSQ formalism.
The observation EQs. have to be linearlized:

v j = A(tj) ∆x0 – (l j’-l j0) , j=0,1,2,...N‘ (4.2)

l j0 = y(x(tj ;x00)) is calculated using x00, the a priori value of x0 known at 
tj. ∆x0 is the increment to these values: x0 = x00 + ∆x0 .

A is a matrix with d’ rows and d columns. Element Aik represents the 
partial derivative of element No. i of y(x0) w.r.t. element k of x0 .

A, the first design matrix, has to be established using the chain rule, i.e., 
one first has to take the partial derivatives of y j w.r.t. the elements of 
x(t), then the partial derivatives of the elements of x(t) w.r.t. the 
elements of x0(t).
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System equations
We assume that the dynamical system is defined by an explicit DEQs

of 1st order (x(1)(t) stands for the 1st time derivative of x(t)):
x(1) = f(t; x) (4.3)

x(t) and f(t,...)) are arrays with d elements. d is the dimension of the  
DEQs.

As every DEQs of a higher than the 1st order may be reduced to one 
of order one, we do not lose generality by considering only DEQs
of 1st order. 

Equation (4.3) does not yet define a particular solution. We need 
additional information, e.g., the initial values:

x(t0) = x0 (4.4)
As the DEQs (4.3) is non-linear, the associated parameter estimation 

process is non-linear, as well.
� The DEQs (4.3) has to be linearized first.
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System equations

The particular solution of a non-linear DEQs may be linearized, 
provided approximate initial values x00 and thus an approximate 
solution ξ(t) are available: 

ξ(1) = f(t; ξ) , ξ(t0) = x00 (4.5)
Let ∆x(t) = x(t)-ξ(t). We may obviously write:

∆x(1) = f(t;x) - f(t;ξ) (4.6)

∆x (t0) = x0-x00 = ∆x0  (4.7)
Function f(t;x) is developed around  (t;ξ) into a Taylor series in ∆x(t) 

= x(t)-ξ(t) and truncated after the terms of 1st order:
f(t;x)=f(t;ξ) + A(t) ∆x(t) (4.8)

A(t) is a matrix with dimension (d x d), the elements Aik of which are 
the partial derivatives of element fi of array f(t,ξ) w.r.t. xk at (t,ξ).

We thus obtain the linearized DEQs for ∆x(t):
∆x(1) = A(t) ∆x (4.9)
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System equations

We have thus shown that every non-linear DEQs may be 
approximated by a linear, homogeneous DEQs, provided an 
approximate solution ξ(t) of the original DEQs is known.

The theory of digital filters always assumes that the dynamical 
system may be described by a linear DEQs. 

In order to avoid restrictions, and to be compatible with general 
filter theory, we also allow for inhomogeneous system 
equations:

∆x(1) = A(t) ∆x + g(t) (4.10)
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System equations
Important properties of linear DEQs:

– The general solution of the inhomogeneous DEQs (4.10) is 
obtained as the general solution of the associated homogeneous 
DEQs and a subsequent „variation of constants“.

– The homogeneous DEQs associated with DEQ (4.10) reads as:
– xh

(1) = A(t) xh , xh(t0) = ∆x0 (4.11)

– The solution is a linear combination of the initial state vector:        
xh(t) = H(t,t0) ∆x0           (4.12)

– H(t,t0) solves the DEQs: 
– H(1)(t,t0) = A(t) H(t,t0) (4.13)

– As xh(t) at t0 assumes the value x0, we have:
– H(t0,t0) = E (4.14)

– where E is the identity matrix of dimension d. 
– Note that matrix H(t,t0) does not depend on ∆x0 – and thus may 

be calculated prior to solving the filter problem.
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System equations

The d columns of matrix H(t,t0) represent a complete system of 
solutions of the homogeneous DEQs (4.11) implying that any 
solution of EQ (4.11) may be written as a LC of H(t,t0).

EQ. (4.12)  says that the solution of the homogeneous DEQs (4.11) 
is a linear combination of the initial state vector at t0, an important 
property, because one is usually interested in 

x(tj) = xj = H(tj ,t0) x0 , 
and not in x0.

As we also allowed for inhomogeneous linear DEQs in Eq. (4.10) we 
now have to provide the inhomogeneous solution.   
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System equations

The inhomogeneous DEQs (4.10) is solved by the method of 
variation of constants, where it is assumed that the initial state 
vector (4.12) is a function of time:

∆x(t) = H(t,t0) ∆x0(t) (4.15)
Replacing ∆x(t) in EQ (4.10) by EQ (4.15) results eventually in:

H(t,t0) ∆x0
(1)(t) = g(t) (4.16)

Multiplying this EQ by [H(t,t0)]-1 = H(t0,t), integrating both sides from 
t0 to t, and meeting the original initial conditions at t0 gives:

(4.17)

The solution of the original inhomogeneous DEQs thus reads as:
∆x(t) = H(t,t0) ∆x0 + q(t,t0) (4.18)

where:

0

1
0( , ) ( , ') ( ') '

t

t

q t t H t t g t dt−= ⋅ ⋅∫ (4.19)

0

1
0 0 0( ) ( , ') ( ') '

t

t

x t x H t t g t dt−∆ = ∆ + ⋅∫
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Observation equations

In order to linearize the observation EQs (4.1) we write:
y(x(t))= y(ξ(t)+ ∆x(t)) =y(ξ(t)) + A‘ ∆x(t)                            (4.20)

Matrix A‘ has dimensions (d‘ x d). Its elements are the partial 
derivatives of the elements of y(x(t)) w.r.t. the elements of x(t) 
at x(t) = ξ(t).

Taking into account EQ (4.18) we obtain:
y(x(t)) = y(ξ(t)) + A‘ [ H(t,t0) ∆x0 + q(t,t0) ]                           (4.21)

The observation EQs are thus linear in the parameters x0:
v j = y(x(tj;x0)) - l j‘ , j=0,1,2,...N‘

v j = A‘ H(t,t0) ∆x0 – (l j‘ - y(ξ(tj)) - A‘ q(tj,t0)) , j=0,1,2,...N‘ (4.22)

v j = A ∆x0 – (l j‘ - l j0) , j=0,1,2,...N‘ (4.23)
v j = A ∆x0 – ∆l j , j=0,1,2,...N‘ (4.24)

where:
A = A‘ H(t,t0),    l j0 = y(ξ(tj)) + A‘ q(tj,t0),     ∆l j = (l j‘ - l j0)       (4.25) 
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Filtering at time tj , Version 1
We assume that measurements referring to different epochs are 

uncorrelated. Measurements made at the same epoch may, 
however, be correlated.

Let Pj be the weight matrix associated with epoch tj. The index „j“
indicates that observations at different epochs may have different 
accuracies.

Based on the observation EQs (4.24) the NEQs of the parameter 
estimation process (and its solution) read as:: 

0

1

j j j

j j

x Q b

Q N −

∆ =

=
0

0 0

0 0

( )

( )

j j j

j j
T T

j j k k k k
k k

j j
T T

j j k k k k
k k

N x b

N A PA A P A N

b A P l A P l b

= =

= =

∆ =

= = ∆

= ∆ = ∆ ∆

∑ ∑

∑ ∑

≐

≐

Index „j“ shall indicate that all measurements up to and including those 
of epoch  tj are used.

(4.26)
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Filtering at time tj , Version 1

For the NEQs one immediately obtains the following simple recursive 
formulas:

1 0, 1 1

1 1

1 1

j j j

j j j

j j j

N x b

N N N

b b b

+ + +

+ +

+ +

∆ =

= + ∆

= + ∆

EQs (4.27) may be applied to all problems consisting of piecewise 
uncorrelated observations. ∆Nj+1 and ∆b j+1 are defined by EQs
(4.26).

EQs (4.27) are very flexible in application. The solution vector and the 
associated covariance matrix only have to be calculated when 
needed. 

(4.27)
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Filtering at time tj , Version 1

The question arises whether recursive formulas exist for the 
inverted NEQs and the solution vector, as well?:

( ) ( )
{ }( )

{ }
{ }

1 0, 1 1

0, 1 1 1 1 0 1

0, 1 1 1 1 0 1

0, 1 0 1 1 1 1 1 0

0, 1 0 1 1 1 0

j j j

j j j j j j j j

j j j j j j

T
j j j j j j j j

j j j j j j

N x b

x Q b b Q N x b

x Q N N x b

x x Q A P l A x

x x K l A x

+ + +

+ + + + +

+ + + + +

+ + + + + +

+ + + +

∆ =

∆ = + ∆ = ∆ + ∆

∆ = − ∆ ∆ + ∆

∆ = ∆ + ∆ − ∆

∆ = ∆ + ∆ − ∆

Eq. (4.28) represents the initial state vector, estimated with all 
observations up to epoch tj+1, as a function of the previous 
estimate (filter value at time tj) and the array of residuals 
pertaining to epoch tj+1, both based on the observations up to 
epoch tj .

(4.28)
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Filtering at time tj , Version 1
Matrix K j is also called gain matrix, the expression in parentheses 

{....} array of measurement innovation.
The algorithm (4.28) is extremely well suited for real-time 

applications, where the new measurements may be quickly 
checked for plausibility (screening of observations). 

The simplest version of a data screening simply compares the 
array of measurement innovation with the (hopefully) known 
mean errors a priori σ of the measurements and removes 
outliers based, e.g., on an (n·σ)–criterion . 

Algorithm (4.28) is already a close relative of the Kalman filter. 
Only two aspects are missing:
– Transformation to a new parameter array for each tj.

– Replace deterministic by stochastic system EQs.

Both aspects will be dealt with in due time.
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Filtering at time tj , Versions 1 and 2

Algorithm (4.28) has a minor flaw: The gain matrix K j contains matrix 
Qj+1 for which no recurrence relation was provided. This matrix is 
calculated using EQ (4.27), via

Nj+1 = Nj + ∆Nj+1 ,   Qj+1=(Nj+1)-1 (4.28a)

If the dimension d of the NEQs is a large number and d‘ a small 
number, i.e., if d >> d‘ the above formula cannot be recommended.

This case motivates a recurrence relation for matrix Qj , as well. The 
algorithm (4.28) will be the same, only the algorithm to calculate 
Qj+1, will change.

Let us point out that we have reached our goal to represent the 
solution vector at time tj+1 recursively as a function of the solution 
vector at tj.
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Filtering at time tj , Version 2

Starting from Eq. (4.27) we may write: 

{ }
{ }

1 1 1 1 1

1 1 1 1

1

1 1 1 1

T
j j j j j j j

T
j j j j j j

T
j j j j j j

N N N N A P A

N N E Q A P A

Q E Q A P A Q

+ + + + +

+ + + +

−

+ + + +

= + ∆ = +

= +

= +

Let us propose to calculate {...}-1 as:

{ } 1

1 1 1 1 1 1 1
T T

j j j j j j j j jE Q A P A E Q XA P A+

−

+ + + + + + + = + 

Obviously {...} [...] = E. One easily verifies that the (d‘ x d‘) matrix Xj+1

must be calculated as: 

( ) 1

1 1 1 1
T

j j j j jX E A Q A P
−

+ + + += − +

(4.28b)          

(4.28c)

(4.28d)
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Filtering at time tj , Version 2

Using EQ (28d) in EQ (28c) and the resulting expression in EQ (28b), 
one obtains the recurrence relation for the co-factor matrix Q:

( )
( )

1

1 1 1 1 1 1 1

11
1 1 1 1 1 1

T T
j j j j j j j j j j j

T T
j j j j j j j j j j

Q Q Q A P E A Q A P A Q

Q Q Q A P A Q A A Q

−

+ + + + + + +

−−
+ + + + + +

= − +

= − + (4.28e)

Matrix K j in EQ (4.28) may be calculated either using EQ (4.28a) or EQ 
(4.28e).

The choice of the formula depends on the particular problem: When 
using EQ (4.28a) one has to take the inverse of a matrix of 
dimension (dxd)- in EQ (4.28e) one of dimension (d‘xd‘).

(4.28e) shows that it is in principle possible to solve the filter problem 
without matrices Nj. 

Drawback: How to initialize Q1?
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Filtering at time tj , Parameter transformation

Algorithms (4.28,3.28a) and (4.28, 3.28e) assume that one and the 
same array ∆x0 of parameters is used throughout the filtering 
process.

We will subsequently replace the parameter array ∆x0 at epoch tj by 
the array ∆x j = ∆x(tj) using the transformation EQs (4.18) (with 
t=tj).

The resulting algorithm only needs only minor modifications.
In order to solve the problem we will treat the general problem to 

perform a parameter transformation in a LSQ environment.
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Filtering at time tj , Parameter transformation

Let us assume that the observation EQs read as: 
v = A ∆x – ∆l (4.29a)

The NEQs shall be written as:
N ∆x = b (4.29b)

Let a “new” parameterarray ∆y be defined by the following 
transformation with the original one, namely ∆x:

∆x = H ∆y + q (4.29c)
Replacing ∆x in EQ (4.29a) by (4.29c) results in

v = AH ∆y – (∆l – A q ) (4.29d)
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Filtering at time tj , Parameter transformation

The NEQs expressed in the new parameters reads as:
(AH)T P (AH) ∆y = (AH)T P (∆l – A q )
HT (ATPA) H ∆y = HT ATP (∆l – A q )

HT N H ∆y = HT (b – N q)            (4.29e) 
N’ ∆y = b’ (4.29f) 

∆y = (N’)-1 b’ = H-1Q(HT)-1 HT (b – N q) = H-1 (∆x – q)              (4.29g)

By comparing EQs (4.29e) and (4.29f) we obtain:
N’ = HT N H and       b’ = b - HT N q (4.29h)

The inverted NEQs is obtained from EQ (4.29g):
Q’ = H-1Q(HT)-1 and     ∆y = H-1 (∆x – q)         (4.29i) 

The sum Σ ∆lTP∆l has to be modified as well:
Σ ∆l’TP∆l’ = Σ ∆lTP∆l + 2 q b + qT N q (4.29k)
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Filtering at time tj , Algorithm 1

Algorithm I, based on NEQ matrices Nj (best suited for d << d‘):
(1) Initialize: Nd-1 = Σ Ak

T Pk Ak , bd-1 = Σ Ak
T ∆lk , k=0,1,...,d-1

Qd-1 = (Nd-1 )-1   ,  ∆x0,d-1 = Qd-1 bd-1

(2)Filter step j � j+1 , j= d, d+1, ..., N‘
(1)Optionally: transformation of solution vector ∆x0

(2)Define A j+1, Pj+1, ∆l j+1

(3)Predict and screen using current estimate ∆x0j

Array of residuals for tj+1 with ∆x0j : r j+1 := ∆l j+1 - A j+1 ∆x0j

Check plausibility of rj+1 (outlier rejection)

(4) Update solution 
Nj+1 = Nj + A j+1

T Pj+1 A j+1

Qj+1 = (Nj+1 )-1

K j+1 = Qj+1 A j+1
T Pj+1

∆x0 , j+1 = ∆x0j + K j+1 r j+1

(3)Optionally: calculate residuals with ∆x0,j+1 : r j+1‘ := ∆l j+1 - A j+1 ∆x0,j+1
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Filtering at time tj , the Algorithm, Version 2

Algorithm II, based on co-factor matrix Qj (best suited for d‘ << d):
(1) Initialize: Nd-1 = Σ Ak

T Pk Ak , bd-1 = Σ Ak
T ∆lk , k=0,1,...,d-1

Qd-1 = (Nd-1 )-1   ,  ∆x0,d-1 = Qd-1 bd-1 *)

(2)Filter step j � j+1 , j= d, d+1, ..., N‘
(1)Optionally: Transformation of solution vector ∆x0

(2)Define A j+1, Pj+1, ∆l j+1

(3)Predict and screen using ∆x0j

Array of residuals at tj+1 using ∆x0j : r j+1 := ∆l j+1 - A j+1 ∆x0j

Check plausibility of rj+1 (outlier rejection)

(4) Update solution
Qj+1 = Qj – Qj A j+1

T (Pj+1
-1 + A j+1 Qj A j+1

T )-1 A j+1 Qj

K j+1 = Qj+1 A j+1
T Pj+1

∆x0 , j+1 = ∆x0j + K j+1 r j+1

(3) Optionally: calculate residuals with ∆x0,j+1 : r j+1’ := ∆l j+1 - A j+1 ∆x0,j+1

*) Alternatively: „Plausible“ assumption for Q-1 (!!!???!!!)
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Stochastic Systems

1. Introduction
2. Stochastic motion of a satellite
3. Treating stochastic systems with LSQ
4. Filtering with stochastic Systems
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Introduction

From now on the functional model of observations will contain stochastic 
components, implying that a system is no longer described by one set 
of parameters (which are estimated with different sets of 
observations), but by different set of parameters which themselves 
define a stochastic process.

In the most general case the physical system is described by a 
stochastic DEQs – where we will assume linear systems.

The R.H.S. of stochastic DEQs contain random vectors.
We will only deal with simple special cases of stochastic DEQs.
We will in particular study the motion of a satellite in the field of a 

spherically symmetric Earth perturbed by the high-pass filtered part of 
drag – which hardly can be treated by a model with few parameters. 
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Introduction
EQs of motion of a satellite:

Let δf(t) represent the high-pass filtered accelerometer 
measurement of GRACE-A in along-track direction S. The 
measured accelerations were made a factor of 100 larger.

The “true” orbit is generated by numerical integration of EQs (5.1)
The osculating elements of the true orbit are obtained from the 

numerically integrated r(t) und v(t):

(5.1)

(5.2)0( ), ( ) ( ), ( ), ( ), ( ), ( ), ( )r t r t a t e t i t t t T tω⇒ Ωɺ

We assume that the Cartesian components of r(t) are observed 
(GOCE orbit determination!). The spacing of “observations” is 
30s.

The measurement errors are assumed to be normally distributed 
with expectation values “0” and σ = 1 m in each coordinate.
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Introduction

δf as taken from GRACE (amplified by a factor of 100) –
corresponding to a satellite flying about at 300 km.

Left: Data over one day, Right: Data over 2 hours
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Introduction

Semi-major axis a of the simulated orbit. The deviations are small 
(sub-m) and chaotic in nature.

If accelerometers are available, such deviations are taken care of. 
A LEO without accelerometers has a problem ... 
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Introduction

Residuals in X-, Y- und Z- coordinates, as seen by a 
deterministic filter. We see a “filter divergence” (here due to a 
model deficiency).



79Ecole d’Eté 2012

Introduction

Residuals of a classical orbit improvement in X, Y, Z are clearly 
different from the „filtered residuals“. The “wings” are typical 
for model deficits. Note that the filtered and normal residuals 
agree towards the end of the day (?).
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Introduction

The same residuals in R (Radial), S (= R x W), W (out of plane).
The W-component shows, as expected (?), normally distributed 

errors with σ = 1m).
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Introduction

Filter residuals of the first hour. Divergence is not visible. �
Subdividing the one-day arcs into short arcs of 1h solves the 
problem!?!?
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Introduction
When setting up “new” osculating elements, let us say every 30m, 

one automatically introduces a time series of orbit parameters
(instead of one set of six parameters).

� Short-arc methods represent very simple stochastic models. 
Short-arc methods are well known and were/are rather successful in 

gravity field determination. They have the advantage that the 
intellectual work is minimized …

Problems associated with short arcs:
– Short-arc methods absorb model deficits in the orbit parameters.
– Short-arcs are not contiguous – a problem for some applications 

(e.g., atmosphere sounding).
– Short arc solutions weaken the entire solution of the parameter 

estimation problem. One day “needs” 48 x 6 = 288 parameters 
instead of 6 when introducing independent short arcs every 30m. 
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Stochastic Systems

Herewith we dismiss the idea to model a complex dynamical system
with only few parameters. 

We lapse into the other extreme and introduce for each time interval 
[ti,ti+1] defined by two subsequent observation epochs one 
parameter si, representing a constant acceleration in along-track 
direction. With a spacing of 30s between observations we have thus 
introduced 2880 additional parameters (on top of the 6 initial 
osculating elements)

We are, however, able to constrain these parameters:
– Expectation value E(si) = 0
– Variance             E(si

2) = σs
2

From the previous figures we take the estimate σs = 0.5 ·10-6 m/s2. 
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Stochastic Systems

The DEQs (5.1) is replaced for t Є [ti,ti+1) by:

EQ (5.2) may be viewed as a simple stochastic DEQ. Only the 
stochastic properties of the parameters si are known! 

The task may be solved “easily” as a deterministic problem, if the 
partial derivatives w.r.t. the parameters si are known (consult 
Beutler (2005), Vol. 1 or Beutler, Jaeggi et al. „Efficient satellite 
orbit modelling using pseudo-stochastic parameters“, Journal of 
Geodesy, (2006) 80: pp 353-372).

Here we circumvent this problem by replacing the si by stochastic 
pulses ∆vi defined by (∆t is the spacing between observations):

∆vi+1 = si ∆t (5.3) 

The acceleration si is thus replaced by an instantaneous velocity 
change ∆vi +1·ev,i+1 , where  ev,i+1 is the unit vector along-track.

3

r
r ei vGM s

r
= − + ⋅ɺɺ (5.2)
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Stochastic Systems

The system EQs are those of the two-body problem

3

r
r GM

r
=ɺɺ (5.4)

The solution of the linearized NEQs at epoch t=ti read as:

6
0 0

0 0
k=1 10

r ( ) r ( )
r( ) = r ( ) + 

i
i i

i i k k
kk k

t t
t t E v

E v=

∂ ∂⋅∆ + ⋅∆
∂ ∂∆∑ ∑ (5.5)

At t=ti we thus have to solve for 6+i parameters. The number of 
parameters grows linearly with time t !

Note that the LSQ solution at t=tj will provide values for all pulses 
set up till t=ti .

The pulses ∆vi are “normal” parameters of the parameter 
estimation process!
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Stochastic Systems

How are the partial derivatives w.r.t. the ∆vi calculated? We already 
showed how this is done, bur repeat the procedure here.

By introducing a ∆vi, we define new initial values at ti.
The linearized task is described by a homogeneous linear DEQs.
The new initial values may be represented as LC of the six partial 

derivatives w.r.t. the initial osculating elements. 
� The partial derivatives w.r.t. each ∆vi may be written as a LC of the 

partial derivatives w.r.t. six osculating elements:

(5.6)
6 6

0 0 0 0

k=1 k=10 0

r ( ) r ( ) r ( ) r ( )
;ik ik

i k i k

t t t t

v E v E
β β∂ ∂ ∂ ∂= =

∂∆ ∂ ∂∆ ∂∑ ∑
ɺ ɺ
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Stochastic Systems

The coefficients βik are determined by conditions to be applied at ti:

Implying that a system of six equations has to be solved to determine 
the coefficients βik: 6

0

k=1 0

6
0

k=1 0

r ( )
0

r ( )
e

where : /

i

i
ik

k

i
ik v

k

ik ik i
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E
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E

E v

β

β

β

∂ ⋅ =
∂

∂ ⋅ =
∂

= ∆ ∆

∑

∑
ɺ

6
0 0

k=1 0

6
0 0

k=1 0

r ( ) r ( )
r( ) 0

r ( ) r ( )
r( ) e

i

i i
i i ik

i k

i i
i i ik i v

i k

t t
t v E

v E
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v E

∂ ∂∆ = ⋅ ∆ = ⋅ ∆ =
∂∆ ∂

∂ ∂∆ = ⋅ ∆ = ⋅∆ = ∆ ⋅
∂∆ ∂

∑

∑
ɺ ɺ

ɺ

(5.7)
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Stochastic Systems

Note that each βik tells by how much the osculating element E0k

changes, when the velocity along-track changes at t=ti by ∆vi = 1
meter.

Let us now add the stochastic information concerning ∆vi:

From
– Expectation value  E(si) = 0
– Variance             E(si

2) = σs
2 , 

− with σs = 0.5 ·10-6 m/s2

we conclude, using ∆vi+1 = si ∆t, that we may define the observation 
equation

 ∆vi+1 = 0                                             (5.8a)

with the weight 
 Pvi= σ0

2 / (∆t σs)2 = 1/(30·10-6)2                      (5.8b)
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Solving the stochastic problem with LSQ

The LSQ solution proceeds in the following steps. We define …
– ... the number of observation epochs (avoid really large dimensions)
– ... the coefficients βik, k=1,2,..,6, for each pulse

We set up
– ... set up the observation equations, 

– ... set NEQs, 

We superimpose …
– ... the NEQs for the individual ∆vi to the NEQs resulting from the “real”

observations
– ... Solve the combined NEQs

– ... Calculate the residuals,

– ... Plot the pulses and compare them with the introduced accelerations.
– ... calculate the osculating elements associated with each observation 

epoch and compare them with the elements generated in the simulation.
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Solving the stochastic problem with LSQ

Experiment 1 – „error-free obs“: σ0 = 1·10-7 m, analyze first two 
hours of the day. Pvi= σ0

2 / (∆t σs)2 = 1.11·10-5 is rather small. 
The estimated pulses and the accelerometer-derived values are 
represented.

The pulses are recovered almost precisely (exception at „�). 
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Solving the stochastic problem with LSQ

Experiment 1 – „error-free obs“: σ0 = 1·10-7 m, analyze first two 
hours of the day. Pvi= σ0

2 / (∆t σs)2 = 1.11·10-5 is rather small. 
The figure shows the residuals. No systematics.
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Solving the stochastic problem with LSQ

After the adjustment the initial osculating elements and the pulses are 
known. The associated changes in the initial elements

∆Ei
T := (Ei1, Ei2, Ei3, Ei4, Ei5, Ei6), i=1,2,...,n-1

may now be calculated using the matrices 
Bi

T = (βi1, βi2,..., βi6) :

(5.9)

(5.9a)

(5.9b)

These epoch-specific orbital elements may now be compared with 
the orbital elements emerging from the simulation-.

0
1

i

i k k
k

E E v B
=

∆ = ∆ + ∆ ⋅∑
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Solving the stochastic problem with LSQ

Experiment 1 – “error-free” obs: σ0 = 1·10-7. The first two hours of 
the day are analyzed. Note that Pvi= σ0

2 / (∆t σs)2 = 1.11·10-5 is 
small. 

The semi-major axes are reconstructed almost perfectly! 
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Solving the stochastic problem with LSQ

Experiment 1 – “error-free” obs: σ0 = 1·10-7. The first two hours of 
the day are analyzed. Note that Pvi= σ0

2 / (∆t σs)2 = 1.11·10-5 is 
small. 

The residuals do not show any systematics.
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Solving the stochastic problem with LSQ

Experiment 2 – σ0 = 1m : The first two hours and the entire days are 
analyzed. Note that Pvi= σ0

2 / (∆t σs)2 = 1.11·10+9 is big. The 
estimated and true pulses are shown..

With σ0 = 1m  the individual pulses are heavily smoothed. 
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Solving the stochastic problem with LSQ

Experiment 2 – σ0 = 1m : The first two hours and the entire days are 
analyzed. Note that Pvi= σ0

2 / (∆t σs)2 = 1.11·10+9 is big. 

The residuals do not show obvious systematics
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Solving the stochastic problem with LSQ

Experiment 2 – σ0 = 1m : The first two hours of the day are 
analyzed. Note that Pvi= σ0

2 / (∆t σs)2 = 1.11·10+9 is big.
Note that the semi-major axes (as opposed to the pulses) are rather 

well reconstructed.
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Solving the stochastic problem with LSQ

Summary:
The „error-free“ experiment shows that  

– the pulses reconstruct (after division by ∆t) the simulated 
accelerations very well,

– there are no systematics in the residuals,

– the orbital elements could be perfectly reconstructed and 
– the observations of ∆vi had no impact on the results.

The experiment with σ0 = 1m shows that

– the estimated pulses have nothing to do with the simulated 
accelerations.

– there are no systematics in the residuals,
– the orbit elements were smoothed but that the major features 

correspond well to the simulations!  
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Filtering the stochastic problem

Our treatment of the stochastic DEQ was mathematically correct, 
but the resulting algorithm would be very inefficient. 
Computation time and disk space are considerable. For real-
time applications the method is not useful.

The efficient solution to be presenting now will result in epoch-
specific parameter estimation procedures with only six 
parameters!

At the end of the parameter estimation process the general 
parameters will be the same in both methods.

Drawback:  The  pulses ∆vi cannot be compared in the LSQ and 
the filtered method, because they are calculated only with the 
observations till ti in the filter approach, whereas all values 
were used in the LSQ method.

A back-substitution process might be used to reconstruct the 
LSQ-values in the filter approach. 
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Filtering the stochastic problem

We perform a transformation of the initial osculating elements at 
each observation epoch, which absorbs the impact of the 
preceding stochastic pulses.

The basic relation was already provided in Eq. (5.9). From this EQ 
we may derive the following recurrence relation:

0
1

1

i

i k k
k

i i i i

E E v B

E E B v
=

−

∆ = ∆ + ∆ ⋅ →

∆ = ∆ + ⋅∆

∑
(5.10)

The NEQs with parameters ∆Ei-1,may be written as: 
Ni-1 ∆Ei-1 = bi-1 (5.11)

Using Eq. (5.10) we now perform the following transformation
∆Ei-1 = ∆Ei – B i ∆vi (5.12)
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Filtering the stochastic problem

The transformation allows it at ti to superimpose the NEQ resulting 
from the pseudo-observation (5.8a) with (5.8b) for index i with the 
“old” NEQ Ni. 

Immediately afterwards ∆vi is pre-eliminated. 
The impact of ∆vi from observations with index k > i is taken care of 

in the new array of elements ∆Ei).

Let (where U6 is the identity matrix of dimension 6):

( )1 6,
i

i i
i

E
E U B

v−

∆ 
∆ = −  ∆ 

(5.13)
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Filtering the stochastic problem

After the transformation (5.13) the NEQs (5.11) assumes the form:

( )6 6
1 6 1

1 1 1

1 1 1

, i
i i iT T

i i i

i i i i i
T T T
i i i i i i i i

U E U
N U B b

B v B

N N B E b

B N B N B v B b

− −

− − −

− − −

∆     
− =     − ∆     

− ∆    
=    − ∆ −    

(5.13)

We may now add observation EQ (5.8a) with weight (5.8b)

1 1 1

1 1 1i

i i i i i
T T T
i i i i i v i i i

N N B E b

B N B N B P v B b
− − −

− − −

− ∆    
=    − + ∆ −    

(5.14)
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Filtering the stochastic problem
The last step consists of pre-eliminating parameter ∆vi – a 

procedure, which we already showed.
The result reads as:

( )
( )

* *
1 1

1*
1 1 1 1 1

1*
1 1 1 1 1

i

i

i i i

T T
i i i i i i i v i i

T T
i i i i i i i v i i

N E b

N N N B B N B P B N

b b N B B N B P B b

− −

−

− − − − −

−

− − − − −

∆ =

= − +

= − +

(5.15)

The transformation from EQ (5.11) to the system (5.15) thus consists 
of three steps:
(a) Parameter transformation ∆Ei-1 � ∆Ei

(b) Add information (5.8a,b) for ∆vi

(c) Pre-eliminate ∆vi

(5.15a)

(5.15b)
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Filtering the stochastic problem

The NEQ contribution from the observations at ti may now be 
conventionally added to Eq. (5.15):

We have thus shown that the original parameter estimation task may 
be solved very efficiently with only six parameters.

Note that the parameters ∆Ei at ti are defined by EQ (5.9). They define 
the state vector at ti!

* *
1 1

1

( )T T
i i i i i i i i i

i i i

i i i i i

N A P A E b A P l

N E b

E N b Q b

− −

−

+ ∆ = + ∆ →
∆ =

∆ = =
(5.16)



105Ecole d’Eté 2012

Filtering the stochastic problem

When combining EQs (5.11), (5.15a,b) and (5.16) we see that the 
update step in the case of stochastic filtering can be made formally 
equivalent to deterministic filtering (compare EQs (4-27)):

Ni+1 ∆Ei+1 = bi+1

(5.17)
Ni ∆Ei = bi

with:
Ni+1 = Ni + ∆Ni

(5.18)
bi+1 = bi + ∆bi

The only difference consists of the algorithm to calculate the 
increments. We are thus able to take over the formulas  (4.28), 
(4.28a-e) of Chapter 4.
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Filtering the stochastic problem

Filtered and true semi-major axis. The initial transient oscillation 
is clearly visible. Left: starting with the second, right: starting 
with observation 20 (after 10 min).



107Ecole d’Eté 2012

Filtering the stochastic problem

Estimated-true positions (x,y,z). Left: LSQ with 2 hours of data, 
Right: with filter. The LSQ solution is much more consistent.
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Filtering the stochastic problem

Residuals in x,y,z. Left: LSQ, Right: Filter. The residuals are of 
the same quality and therefore not suited to judge the quality 
of the solution. 
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Filtering the stochastic problem

Semi-major axis estimated by LSQ (left) and filter (right). The quality 
differences are obvious!
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Filtering the stochastic problem

„Estimated-true“ positions (x,y,z). Left: LSQ, Right: Filter. The LSQ 
solution is better by about a factor of 2 even after the initial
oscillation.

Note that the filter solutions are not as smooth as the LSQ solutions. 
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Filtering the stochastic problem

At the very last data point the LSQ and the filter solutions are identical, 
but the pseudo-stochastic parameters are not available when 
filtering. 

A back-substitution step cures this problem when filtering. Back-
substitution of course is not possible in real-time applications.

For more information we refer to Beutler, Jäggi et al. „Efficient satellite 
orbit modelling using pseudo-stochastic parameters“, Journal of 
Geodesy, (2006) 80: pp 353-372.
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Filtering the stochastic problem

Summary:
In this chapter we dealt with parameter estimation problems, where the 

parameter array is in itself a stochastic process, defined in essence 
by a stochastic DEQs.

In order to solve the problem the epoch-specific parameters have to be 
constrained in a meaningful way.

We treated the epoch-specific parameters as random variables with 
expectation value “0” and weight Pv = ( σ0 /σv )2. For Pv=0 the filter 
solution follows the observations very well, for large values of Pv we 
obtain a deterministic solution. 

The concept introduced here is that of the Kalman filter (which would 
introduce stochastic information in all components).


