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Astrodynamics

According to the Encyclopedia of Astronomy and Astrophysics 
Astrodynamics means the study of the motion of bodies in 
gravitational fields, with particular reference to the motions of 
artificial satellites and space probes.

Astrodynamics thus deals with the motion of 
– Point masses (minor planets, comets, natural and artifical satellites)
– Extended celestial bodies (planets, natural satellites (moons)).

Astrodynamics in the broadest sense also deals with the rotational 
motion (e.g., of planets).

This lecture is based on the two-volume monograph 
G. Beutler: Methods of Celestial Mechanics: 
Vol 1: Physical, mathematical, and Numerical Principles,
Vol II: Application to Planetary System, geodynamics, and 
Satellite Geodesy 
Springer-Verlag 2005
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Astrodynamics

The focus of this lecture uniquely is on the orbital  motion of point 
masses orbiting around the Sun or the Earth as primary gravitational 
attractors.

The illustrations were
– either generated with MatLab or  

– or extracted from Beutler (2005).

– or generated with CelMech, a menu-driven program system, which 
allows it, e.g., to numerically integrate the planetary system or to solve 
the equation of motion of artificial Earth satellites.

CelMech consists of eight eight programs and has a very useful help-
system.
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Abbreviations

AM(V) Angular momentum (vector)
CB(s) Celestial bodies
CM Celestial Mechanics
CoM Center of mass
CS (Cartesian) Coordinate System
EQ(s) Equations
DEQ(s) Differential Equation (system)
IGS International GNSS Service
IS Inertial System
JD Julian Date
LEO Low Earth Orbiter
LHS Left-hand side (of an EQ)
MJD Modified Julian Date
MP Minor planet
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Abbreviations

n-g non-gravitational
IS Inertial System
LEO Low Earth Orbiter
LHS Left-hand side (of an EQ)
NEQs Normal EQuation System
RHS Right-hand side (of an EQ)
t Newtonian time
x(t) Position vector of a CB in the IS
r(t) heliocentric or geocentric position vector of a CB
RPR Radiation pressure
SM-axis Semi-major axis
TT Terrestrial Time
TAI Coordinated Atomic time
TBP Two Body Problem
TDB Barycentric Dynamic time
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Equations of Motion: Planetary System
For our purpose it is sufficient to say that an inertial system (IS) 

consists of a time scale and a Cartesian coordinate system in the 
three-dimensional Euclidian space E3. We assume the system to 
be rigidly attached to the rest system of quasars.

Celestial Mechanics (CM) of the planetary system uses TDB, 
barycentric dynamic  time, which is derived from atomic time 
through:

0.001658sin 0.000014sin 2TDB TT g g= + +
where g = 357.53+0.9856003 (JD-2451545) and TT is the 

terrestrial time, which in turn follows from TAI. We use the 
ecliptical system J2000.0, defined through the mean Earth 
equator and the mean ecliptic of January 1, 2000, 0h TBD. In the 
planetary system we will uniquely take into account Newton‘s 
law of universal gravitation specifying the attractive force 
between point masses m and M at a distance r (e is the unit 
vector between m and M):
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Equations of Motion: Planetary System

The trajectory of the point mass m is known, if its position vector x(t) is 
known in the IS as a function of time t.
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Equations of Motion: Planetary System

When dealing with celestial bodies of finite dimensions the position 
vector x(t) of the body‘s center of mass and its attitude w.r.t. the IS 
have to be known.

This implies that a body-fixed reference frame has to be known at 
each epoch t.
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Equations of Motion: Planetary System

Dividing this EQ by mi we obtain:

The EQs of motion of the planetary system are those of the N-body 
problem:

Subtracting from the above Eqs for I ≠ 0 the equation for the central 
body (Sun) with i=0 we obtain the heliocentric equations of motion:

The first term on the r.h.s. is the two-body term. The second is the 
perturbation term. Excluding close encounters i=1,2,..,n and 
assuming that the masses mi are significantly smaller than the 
mass m0 of the central body, the absolute value of the perturbation 
term is significantly smaller than that of the two-body term, as well.
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Equations of Motion: Planetary System
The planetary system, consisting of the Sun, the planets, the moons 

of the planets, minor planets, comets, with all in all N=n+1 
celestial bodies, is mathematically described by a system of 
ordinary differential equations (DEQs) of second order and 3·n
(scalar) equations.

If the initial state vectors of all CBs (position- and velocity- vectors of 
all CBs) are known, the DEQs can be solved, e.g., with the 
methods of numerical analysis.

Minor planets and comets usually are assumed to have  negligible 
masses. Their EQs of motion therefore may be solved separately 
from the EQs of motion of the CBs with finite masses. The 
corresponding DEQs, where the mj und die r j may be assumed 
as known, read as:
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Equations of Motion: Planetary System

The RHS of the EQs of motion of the planetary system may be written 
as gradients of (scalar) potentials:

First Integrals: Ten functions of the position and velocity 
vectors are constant (time independent). Six are due to the 
fact that the center of mass (CoM) of the planetary system 
moves with constant velocity on a straight line in each IS. 
One function exploits the fact that the total energy of the 
system is constant. Three functions express the preservation 
of the total angular momentum.
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Equations of Motion: Planetary System

Motion of the CoM: The CoM of a system of point masses is defined as:

From the EQs of motion we obtain directly:

Integrating this EQ twice in time we obtain:

where the two vectors on the RHS may be interpreted as the 
(time-independent position- and velocity-vectors) of the CoM
of the planetary system.
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Equations of Motion: Planetary System

Preservation of angular momentum (AM): AM is defined by:

We multiply EQ of motion i with mi , multiply by x i x (cross product) and 
sum over all CB:

The preservation of the AM vector follows by integration over time t.
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Equations of Motion: Planetary System

Preservation of Energy: The energy is defined by:

Energy  preservation follows by multiplication of EQ i by mi x i

and by subsequent summation over i:
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Equations of Motion: Planetary System

The preservation of the AMV allows it to define a CS well suited for 
studying the dynamics of the PS. Its fundamental plane is 
heliocentric and perpendicular to the AMV. (The fundamental plane 
of a CS is the plane defined by its first two coordinate axes).

The heliocentric plane perpendicular to the AMV is called the  
– invariable plane or

– Laplace plane (in honor of Pierre Simon de Laplace 1749-1827).

Its Euler angles w.r.t. J2000.0 are
– i = 1.58o ,  Ω Ω Ω Ω = 107.6o

With the exception of the inner- and outermost planets, the inclination 
angles of the planetary orbits are small w.r.t. the Laplace plane. 
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Equations of Motion: Planetary System

Seven out of eight planets have small eccentricities and 
inclinations. 

The distinction is made between the inner and outer system. IAU‘s
wisdom named Pluto as a dwarf planet. Minor planets are found 
“adjacent to the boundaries” of the newly defined outer system.
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Equations of Motion: Planetary System

If the revolution periods of Jupiter and a MP may be expressed as the 
quotient of two small integer numbers, the revolution periods are 
said to be commensurable:

Disregarding perturbations the motion of the two CBs is periodic, 
where the period is called resonance period

The mean synodic period of a planet (from conjunction to 
conjunction) is obtained as:

Resonance and synodic periods are related by:
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Equations of Motion: Artificial Earth Satellites

Preamble: 
– The following derivations are in principle applicable to any satellites 

(with negligible mass) orbiting about any planet or moon of a planet.
– The following formulas, taken from Beutler (2005), do for simplicity 

always refer to the Earth as central body.

– We are thus deriving the Eqs of motion of an artificial Earth satellite.

– In order to somewhat simplify the theory, we treat the Earth as a rigid
body of finite dimensions. Through this assumption we avoid the 
introduction of Tisserand coordinate systems, Beutler (2005), Vol I, 
Section 3.3.7, p. 91ff.

– The derivation of the EQs of motion of artificial satellites follows the 
scheme of the derivation laid down in the previous section.
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Equations of Motion: Artificial Earth Satellites

Characterization of the problem:
– The mass of the satellite may be neglected w.r.t. mass of the planet (the 

Earth); it is thus assumed that the artificial Earth satellites do not 
influence the Earth’s orbital and rotational motion.

– Orbits and masses of other CBs are assumed as known.

– The Earth is treated as a CB with finite dimensions. The other CBs 
involved usually are treated as point masses (with the possible 
exception of the Moon).

– As opposed to the EQs of motion of the planetary system, non-
gravitational forces (actually perturbing accelerations of the satellite due 
to non-gravitational forces) have to be included as well. 

– The satellite mass and its surface properties are of paramount 
importance for modeling non-gravitational forces.

– Relativistic effects are small and may be treated as perturbations. The 
key-word is “parameterized Post-Newtonian” equations (see Beutler
(2005), Vol I, Sections 3.5 and 4.4). 
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Equations of Motion: Artificial Earth Satellites

The EQs of motion for a satellite of mass m are first set up in an IS. 
In the non-relativistic approximation we have the change of 
linear momentum on the LHS of the EQs, the sum of the forces 
on the RHS:

The first term on the RHS represents the gravitational attraction by 
the Earth, where ρp is the density at xpppp in the Earth’s interior. 

The second term represents the sum of the gravitational attractions 
of all CBs included.

The third term stands for the sum of all non-gravitational forces.
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Equations of Motion: Artificial Earth Satellites

Dividing both sides of the EQs of motion by the satellite mass m we 
obtain the usual version of the EQs of motion in the IS:

where G is the gravity constant, M the total mass of the Earth 
(including oceans and atmosphere). 

ρpr is the density at xp, expressed in units of M.
ang are the non-gravitational forces per mass m of the satellite, often 

somewhat incorrectly expressed as non-g accelerations.
The EQ of motion acting on the Earth’s CoM simply is:
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Equations of Motion: Artificial Earth Satellites

Subtracting the EQ of motion for the CoM of the Earth from the EQ 
of motion of the satellite (both EQs referring to an IS) we obtain 
the geocentric EQs of motion of the satellite.

The resulting reference system is quasi-inertial: It is for each epoch 
t parallel to the IS, but as it is geocentric, it contains the non-
linear motion of Earth’s orbital motion: 

where:

In satellite geodesy we use the equatorial system J2000.0 to express 
the above equations in coordinates.
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Equations of Motion: Artificial Earth Satellites

All gravitational contributions on the RHS of the EQs of motion may be 
expressed as gradients of a potential:

The above integral is evaluated in an Earth-fixed system –
alternatively one would have to perform the integration over a 
time-varying Earth-body, a true nightmare. 
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Equations of Motion: Artificial Earth Satellites

The EQs of motion were derived as vector equations. We may, 
however, also understand/interpret them as coordinate EQs
in the quasi-inertial equatorial system.

To evaluate the Earth’s potential in the Earth-fixed system, the 
first term has to be transformed back from the Earth-fixed 
system to the IS.

T Is the transformation matrix form the Earth-fixed system to the 
quasi-inertial system.

The above equation refers to the quasi-inertial geocentric system.
The gradient operation in the first term on the RHS must be 

performed in the Earth-fixed system.



26Ecole d’Eté 2012

Equations of Motion: Artificial Earth Satellites

In the Earth-fixed system the potential function of the Earth reads as:

Using the Laplace equation (which holds in the exterior of the mass 
distribution), one eventually obtains the following representation (for 
details we refer to Beutler, Vol. I, Section 3.4.2):

where r is the satellite’s distance from the Earth’s CoM, λ is the satellites 
spherical longitude, φ its spherical latitude.

P..(sin φ) are the associated Legendre functions of degree i and order k.

Cik and Sik are the coefficients of the development of the potential into 
spherical harmonic functions.
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Equations of Motion: Artificial Earth Satellites

The coefficients may be expressed as functions of the Earth’s density: 

The coefficients might be calculated, if the density function in the 
Earth’s interior were known.

As this is not the case, the C.., S.. are the parameters of gravity field 
estimation.
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Equations of Motion: Artificial Earth Satellites

The terms of the degrees i= 0 und j=1 assume simple values:

provided we adopt the Earth’s CoM as the origin of the Earth-
fixed coordinate system.
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Equations of Motion: Artificial Earth Satellites

The terms of degree i=2 may be interpreted in a simple way, provided 
the coordinate axes are selected as the axes of principal inertia:

C20 represents the flattening of the Earth. A.., B.., and C.. are the 
Earth’s three principal moments of inertia.
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Equations of Motion: Artificial Earth Satellites

The development of the Earth‘s potential into spherical harmonics:
– Each solution of the Laplace-EQ is called a harmonic function.
– When expressed in spherical coordinates, one also speaks of spherical-

harmonic functions, or simply of spherical harmonics.
– The potential function of the Earth has terms of the following kind:

• Zonal terms, not depending on λ (but only of r und φ),
• sectorial terms, not*) depending on φ (but only on λ and r), as well as
• Tesseral terms, depending on all three spherical coordinates.

*) Apart from the weighting factor |cos φφφφ|k for terms of degree and order 
k.

The following pictures represent the three different kinds of terms – on a 
unit sphere. Zones where the potential function has a positive sign 
are marked in white, those with a negative sign in black. 
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Equations of Motion: Artificial Earth Satellites

From left to right: Zonal (6,0), sectorial (7,7) and tesseral harmonic 
(13,7) functions.
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Equations of Motion: Artificial Earth Satellites

Using fully normalized Legendre functions,  the corresponding 
harmonics are normalized for r=a. and the coefficients Cik, Sik

are a measure for the corresponding terms.
The first few coefficients of the potential are (model JGM3):
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Equations of Motion: Artificial Earth Satellites
We know that C00=1. We may thus summarize:

– The term C20 is small compared to the main term (factor of 2000). 
– The term C20 is the largest perturbation terms, by three orders of 

magnitude larger than all the others. The term is caused by the 
difference of the equatorial and polar moments of inertia (A & B
and C, respectively). 

– The other perturbation terms are of a similar order of magnitude, 
but about 200-1000 times smaller than C20 .

We may thus conclude that the that an accurate description of the 
Earth potential becomes relatively complicated for degrees n > 
2-

Kaula‘s rule of thumb gives an approximate “law” for the order of 
magnitude of the fully normalized geopotential terms as a 
function of the degree i:
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Equations of Motion: Artificial Earth Satellites

Kaula‘s „rule of thumb“ and the „true“ degree amplitudes of 
degree i of the JGM3.
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Orbit Parameterization

The EQs of motion of an artificial Earth satellite moving under the 
gravitational attraction of Earth, Moon, Sun, planets and of non-
gravitational forces may be written as:

If the state vector (r(t0), v(t0)) is known at an initial epoch t0, a particular 
solution of the above DEQ is defined. 

There is a one-to-one relationship between the state vector and the so-
called osculating orbital elements of an epoch t:

0( ), ( ) ( ), ( ), ( ), ( ), ( ), ( )r t r t a t e t i t t t T tω⇔ Ωɺ

where a stands for the semi-major axis, e for the numerical 
eccentricity, i for the inclination w.r.t. the equator, Ω for the right 
ascension of the ascending node, ω for the distance of the preigee
from the node, and T0 for perigee passing time.
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Orbital Coordinate System (x,y,z(=0))

v is the so-called true anomaly

Coordinates in orbital system:

2

(cos )

1 sin

x a E e

y a e E

= −

= −

σ(t) = n (t-T0) (=mean anomaly)

Kepler‘s equation:

E(t) = σ(t) + e sin E(t)

E(t) = eccentric anomaly

n2a3=GM

n=mean motion (rad/s)

(4.32b)

(4.32c)

(4.32d)

ex-axis: geocentric direction to perigee, z-axis: ez = (r x v/| r x v |), y-axis: 
ey = ez x ex
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Orbit Transformation Orbital ���� IS
x and y are the coordinates in the

orbital system.
xa, ya, za the coordinates in the IS 

(equatorial system J2000.0).
Ri(α) is the rotation matrix about

axis i and around the angle α.

The transformation from the
orbital system to the IS then
reads as (dotted quantities
stand for the time derivatives): 

3 1 3( ) ( ) ( )

0

a

a
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x x
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Orbital Coordinate Systems

Beutler (2005), Vol. 1, Table 4.3 makes the distinction of four orbital systems. 

The one we defined previously is the second one of the above table.

In perturbation theory we will need the third or the fourth of these systems.
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Elements of perturbation theory: Contents

1. Osculating and mean orbital elements
2. Motivation and classification
3. Gaussian perturbation equations 
4. Perturbations of the first order
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Osculating and mean elements

The two-body problem allows it to calculate for each epoch t the state 
vector (r(t), v(t)) using a set of orbital elements (a, e, i, Ω, ω, T0).

Vice-versa this (time-independent) set of elements may be calculated 
from the state vector of each epoch t :

For a perturbed trajectory solving the DEQ on page 34 one may assign 
a set of osculating element to each epoch t by calculating orbital 
elements from the corresponding state vector using  the formulas of 
the two-body problem. Such elements are called osculating orbital 
elements (at osculation epoch t):



41Ecole d’Eté 2012

Osculating and mean elements

Osculating elements are unsuitable to describe the development 
of an orbit over long time intervals (hundreds of revolutions). 
The above Figure (left) shows the development of Jupiter’s 
semi-major axis over 120 years (when integrating the outer  
planetary system). The figure shows a prominent periods of 
about 60 years (= five revolutions of Jupter, 2 of Saturn).

The above Figure (right), showing the development of Jupiter’s 
osculating semi-major axis years over 2000 years, motivates 
the definition of mean orbital elements.
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Osculating and mean elements

Let I(t) ∈ { a(t), e(t), i(t), Ω(t), ω(t), T0(t) } one of the osculating orbital 
elements. A mean orbital element at epoch t is defined by:

By construction the mean elements are analytical functions of 
time t. The averaging period ∆t should either be very long or a 
multiple of the prevailing short periods.

The following example meets this requirement..

Unskillfully selected ∆t may result in the generation of alias 
periods.   
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Osculating and mean elements

Osculating (left) und mean (right) semi-major axis a of Jupiter 
over 2000 years. ∆t = 5 revs of Jupiter = 2 revs of Saturn.

The period of 900 is called the great inequality. It was detected 
in the early 17th century (Kepler era) as excursions in the 
longitudes of the planets Jupiter and Saturn, not in the semi-
major axes. 

The effect was correctly explained by Pierre-Simon de Laplace 
in 1787. 
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Perturbations: Classification
The expression perturbed motion implies that an unperturbed motion 

exists. In CM the unperturbed motion is the two-body motion. 

The perturbed motion is defined by the EQs of motion (in this context 
called perturbation equation) and the associated state vector at t0:

The first term on the RHS of the above DEQ may be called two-body 
term, the second perturbation term. The terminology makes sense, 
provided:



45Ecole d’Eté 2012

Perturbations: Classification

All methods to solve the perturbation equations are called

– Methods of perturbation theory or simply perturbation method. 

In CM we make the distiction between

– General perturbation methods, if the solution is sought in terms 
of elementary inegrable functions 

– Special perturbation methods, if the solution is generated 
numerically.

General perturbation theory played a preeminent role in CM and in the 
context of the development of analytical mechanics..

With the advent of electronic computers in the 2nd half of the 20th

century special perturbation methods replaced the general methods 
for most applications.

General perturbation methods are important today for studies trying to 
understand particular perturbed motions.
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Gaussian Perturbation Equations

Let I(t) ∈ { a(t), e(t), i(t), Ω(t), ω(t) , T0(t) } an osculating element.

By construction their time dependence is given by that of the state 
vector: 

The time development of I(t) is obtained by taking the the time 
derivative of the above EQ:

The second time derivative of r in the second term on the RHS may be 
replaced by using the perturbation EQ in rectangular coordinates:
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Gaussian Perturbation Equations

As I(t)=const in the two-body motion, we obtain the remarkably 
simple Gaussian perturbation equations:

The six perturbation equations in the osculating elements may 
thus be written as a systems of 6 coupled DEQs of order 1:

The DEQ system is mathematically equivalent to the perturbation 
EQs in rectangular coordinates (3 DEQs of second order). 

The alternative formulation is attractive, as the RHS are small
quantities.

To  obtain the Gaussian perturbation equations in explicit form for 
a particular perturbation δf, one merely has to calculate the 
scalar products on the RHS.   
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Gaussian Perturbation Equations

Let us directly derive the perturbation equation for a from energy 
preservation of the two-body motion:

Taking the gradient (in velocity space) on both sides of the Eq
we obtain: 

or:

The Gaussian perturbation EQ for the semi-major axis a thus reads as:
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Gaussian Perturbation Equations

Scalar products are invariant under 
rotation. Therefore one may use 
particularly well suited decomposi-
tions of the forces.  

The figure illustrates the (R,S,W)- and 
die (T,N,W)-decomposition. R stands 
for the radial, S for normal to R in the 
orbital plane (close to along-track). 
W is parallel to eR x eS, i.e., normal 
to the orbital plane.

T is the along-track component, N is 
normal to T pointing into the interior 
of the ellipse.

Many perturbations may be particularly simply represented in one of 
the two decompositions (e.g., drag and radiation pressure).
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Gaussian Perturbation Equations

Using the (R,S,W)-decomposition the Gaussian perturbation equations 
for the six classical osculating elements read as:

The Gaussian perturbation equations hold for all types of forces
(conservative or non-conservative). 
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Gaussian Perturbation Equations

The Gaussian perturbation equations may be solved approximately
making use of the fact that the RHS of the Gaussian perturbation
EQs are small quantities.

Perturbation methods of first order result, if the RHS of the EQs are 
approximated with the two-body approximation (keeping the 
osculating elements constant).

In this case the coupled system of six first-order DEQs becomes 
decomposed into six mutually independent integrals, which may be 
solved independently.

The scalar products on the RHS of the perturbation equations are thus 
calculated with the two-body approximation.

Perturbation methods of the first order are very efficient. Note, however, 
that the results are approximate and should not be used over more 
than a few revolutions.
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Perturbations due to C 20

Let us assume that:
– only the terms C00 and C20 are different from zero 
– the Earth’s rotation axis coincides with the Earth’s axis of 

maximum inertia
– Precession, nutation, and polar motion are neglected.

Under these assumptions we may write:

Note that 
– the Earth’s potential is longitude-independent

– the transformation between the IS and the Earth-fixed system 
may be set to the unit matrix.
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Perturbations due to C 20

The perturbations were provided in the equatorial system. They may be 
easily transformed into the (R,S,W)-system: 

Putting u=ω+v the result is (see Beutler (2005), Vol. 2, Sect 3.1.2):
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Perturbations due to C 20

The previous expressions may be introduced into the RHS of the 
Gaussian perturbation EQs .

Assuming the orbital elements on the RHS of these EQs as 
constant, the EQs may be solved in an elementary way. 

Assume circular motion, adapt the Gaussian perturbation EQs to 
this case and solve them!
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Perturbations due to C 20

Subsequently the perturbation EQs will be solve without approximat-
ions and the resulting osculating elements will be discussed. The 
osculating elements at t0 = Jan 1, 2001, 0h are:

a and e show only short-period variations.
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Perturbations due to C 20

The perturbations in the R.A. of the ascending node Ω Ω Ω Ω and in the 
argument ω ω ω ω of perigee also show secular perturbations (the 
node rotates clockwise, the perigee ant-clockwise – for the 
initial conditions used).
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Perturbations due to C 20

Rotation of the node for i = 35o, 63.4o and 90o. The node does 
not rotate for i = 90o (and i = 0o). For i > 90o, the node 
progresses anti-clockwise.
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Perturbations due to C 20

Sun-synchronous orbits for different sm-axes (heights): The orbital 
plane must rotate anti-clockwise with 1o / day, to keep the 
orientation of the orbital plane (approximately) constant w.r.t. the 
Sun. The above table gives the inclinations as a function of the
orbit height, for which this the case.

The anti-clockwise motion of the node for  i>0o may thus be used 
for LEOs to generate Sun-synchronous orbits (the GOCE orbit, 
e.g., lies approximately in the terminator plane).
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Perturbations due to C 20

Rotation of perigee distance ω for inclinations i = 35o, 63.4o, 90o. For 
i= 63.4o the perigee stands still. For i< 63.4o the perigee moves 
ant-clockwise, for i>63.4o clockwise. 

The inclination i=63.4o is called critical inclination. 
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Perturbations due to C 20

The standstill of the perigee for  i=63.4o may be used to keep the 
perigee (or apogee) at a particular latitude.

Russia developed a system of telecommunication satellites 
(Molnja-type). The satellite orbits have 
– Eccentricities of about e=0.72, 
– SM axes of about 26550 km, 
– A perigee distance of about ω=270o and 
– An inclination of i=63.4o.

The satellites thus have their apogees at a Northern latitude of
i=63.4o and a height of hapo=39‘360 km.

As the satellites move much slower near apogee than near 
perigee, the satellites spend about 8-10 above Northern 
latitudes (the revolution period is 12 h).

The Russian Tundra satellites (with e=0.27 und and a revolution 
period of 1 day) also make use of the critical inclination. A 
permanent survey of the Northern hemisphere may be 
achieved with only three satellites.
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Non-gravitational forces
As opposed to natural CB of the planetary system non-gravitational 

forces are much more important when dealing with artificial 
satellites.

The area/mass-ratio A/m of a satellite is the most important parameter 
to characterize the non-gravitational forces.

A is the cross section of the satellite for the perturbation considered 
(for drag normal to the velocity vector, for radiation pressure normal 
to the direction Sun->satellite), m is the satellite mass.

For the first generation of Earth science satellites the attempt was 
made to render A/m as small as possible.. 

A/m-ratios of a few important satellites: 
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Non-gravitational forces

Left: Characteristics of LAGEOS-1 und –2. Right: „Artist‘s view“
of Lageos-2. Our knowledge of the Earth’s gravity field stems 
in essence of these two satellites … where admittedly 
remarkable contributions go back to the times of Newton …).

LAGEOS Parameters

LAGEOS-1 LAGEOS-2

Sponsor: United States United States & Italy

Expected Life: many decades many decades

Primary Applications: geodesy geodesy

COSPAR ID: 7603901 9207002

SIC Code: 1155 5986

NORAD SSC Code: 8820 22195

Launch Date: May 4, 1976 October 22, 1992

RRA Diameter: 60 cm 60 cm

RRA Shape: sphere sphere

Reflectors: 426 corner cubes 426 corner cubes

Orbit: circular circular

Inclination: 109.84 degrees 52.64 degrees

Eccentricity: 0.0045 0.0135

Perigee: 5,860 km 5,620 km

Period: 225 minutes 223 minutes

Weight: 406.965 Kg 405.38 kg
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Non-gravitational forces

Left: Principles of satellite accelerometry. The motion of a test mass in the 
shielded interior is measured (kept in place through electrostatic forces). 
Right: real satellite accelerometer. 

Stability in time is critical � in any case one has to solve for one offset and 
one drift parameter per day (usually many more fudge parameters).
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Non-gravitational forces: drag

Above a height of about 50 km the atmospheric density is sufficiently 
small to ignore turbulence.

Assuming that Earth‘s atmosphere rotates with the solid Earth, the per-
turbation due to drag may be calculated in a simple way – provided 
the atmospheric density ρ(r) at the satellite position r is known.

Assuming furthermore that the satellite absorbs all molecules hitting it 
in [t,t+∆t], the change of impuse ∆∆∆∆p is calculated in the Earth-fixed 
system as:

From where we obtain the perturbing acceleration due to drag as:
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Non-gravitational forces: drag
Real satellite is more complicated because not all molecules are

absorbed by the satellite, but reflected from its surface, which
implies:
– The resulting acceleration must not be precisely  anti-parallel to the 

velocity vector.
– For the resulting acceleration we introduce an empirical pre-factor C, 

accounting approximately for the difference between absorbed and
reflected molecules. 

C may be calculated for special satellites (for spherically symmetric 
satellites we have C=2, i.e., drag is independent of the fraction 
absorbed/reflected molecules. 

The general formula for drag reads as:  

where:
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Non-gravitational forces: drag

Locally, the density ρ(h) of the atmosphere may be approximated by 
the  barometric height formula:

h0 is reference height, H0 the scale height.
Even for low eccentricity orbits the difference  hapo – hper >> H0 , 

implying that usually one cannot work with one barometric 
formula over one revolution of the satellite motion.

Moreover ρ(h) is latitude- and longitude-dependent and has seasonal 
and Sun-cycle variations. 

Even detailed models do not allow it to introduce drag as a „known“
force. For high-accuracy applications one has to solve at least for 
a scaling factor.
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Non-gravitational forces: drag

Mean electron content in the upper atmosphere as estimated by 
CODE (Center for Orbit Determination in Europe). Note the 
length of the most recent solar cycle.



68Ecole d’Eté 2012

Non-gravitational forces: drag

Mean atmospheric density from the MSIS-model.
Drag may be neglected above a height of about 2000 km.
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Non-gravitational forces: drag

Let us use the orbit characteristics of GPS/MET, a test satellite of 
the mid 1990s to study atmosphere sounding with GPS, to 
study the impact of drag.

The orbit characteristics and the A/m ratio for GPS/MET are:
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Non-gravitational forces: drag

Decay of the semi-major -axis a of GPS/MET making different (but 
realistic) assumptions concerning the atmospheric density. 
Bottom line: The sm-axis decreases by several m/day.
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Non-gravitational forces: drag

With an eccentricity of e=0.05 instead of e=0.02, the satellite would 
have penetrated more deeply into the atmosphere and the 
perturbation would have been much stronger!

For satellites with “higher” eccentricities, drag outside the perigee is 
almost irrelevant.
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Non-gravitational forces: drag

Decrease of Perigee and Apogee of GPS/MET (with e=0.05) over one 
day:
– There perigee barely changes, whereas the apogee decreases by 

several hundred m per day! �
– Orbits are getting more circular due to drag.

– Drag cleans the atmosphere < 1000 km from LEOs and space debris!
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Non-gravitational forces: rpr

Quantum theory says that a photon with frequency ν and wave-
length λ=c/ν carries an energy E=hν and a momentum of p= hν/c
e, where h=6.62 10-34 Js is Planck’s constant, e is the unit vector 
of propagation of the photon. 

In practice it is a difficult task to calculate the transfer of momentum 
on satellite with complicated shape in a general radiation field. 
The principles underlying the task are, however, simple: 
– The satellite surface is subdivided into small surface elements.

– For each surface element and for each frequency one calculates the 
number of incident photons and the associated momentum.

– If all photons are absorbed, the resulting momentum equals the sum 
of all incident photon momentums. 

– For the fraction of the photons reflected, the resulting momentum is 
the difference of the photon momentums of all reflected and all 
incident photons.  
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Non-gravitational forces: rpr
Under the following assumptions rpr acting on a satellite may be 

calculated easily:
– The Sun is the only radiation source 
– The radiation is assumed to be parallel at the satellite

– The entire radiation is absorbed by the satellite:  

Where
S is the solar constant (at 1 AU) (=incident Energy on an area of

1 m2 per s normal to the direction Sun �area).
A.. Is the Astronomical Unit, 
r is the geocentric position vector of the satellite, and 
ro is the geocentric position vector of the Sun.  
The factor would be C=2, if all photons were absorbed. Usually 

one has 2 < C < 2.5 .  
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Non-gravitational forces: rpr

Modeling rpr is encumbered by the fact that rpr has to be 
switched of, when the satellite enters the Earth’s shadow. 

The transition light <-> shadow is relatively rapid. This is a 
problem for analytical and numerical procedures.
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Non-gravitational forces: rpr

On the average over one revolution rpr barely changes the 
elements i and Ω (except in shadow periods).

Eccentricity e and perigee distance ω are effected heavily. Only 
when averaging over the draconitic year of a particular 
satellite, the impact is averaged out.

Depending on the A/m-ratio very large long-period effects may 
result. Such effects occurred for Space Debris. Periodic 
changes up to ∆e = 0.7 occur.

The duration of shadow periods heavily depends on the orbit 
characteristics. Up to half of the orbit may be in shadow for 
LEO satellites, for high-orbiting satellites (e.g., geostationary 
or GNSS-type satellites the shadow period is of the order of a 
few percent of the revolution time).  

For GNSS satellites, orbiting the Earth at a height of about 20‘000
km, the maximum shadow duration is about one hour.
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Non-gravitational forces: rpr

Impact of rpr on the sm-axis a and on the eccentricity e of a GPS-
satellite (over the period of one year).

Averaged over one orbital period the rpr perturbations in a are zero 
(except during the shadow periods).

The eccentricity e changes smoothly over the year.
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Non-gravitational forces: rpr

Apart from solar (or direct) rpr the following effects have to be taken 
into account for accurate orbits:
– rpr due to solar radiation reflected/re-emitted by the Earth (Albedo-rpr) 

as well as
– rpr due to solar radiation reflected/re-emitted by the Moon. 

Within the IGS one has even been able to identify (missing) rpr effects 
during lunar eclipses!

In summary one may say that rpr must be carefully modeled for LEOs, 
MEOs, GEOs.

Precise rpr modeling currently is the most important accuracy-limiting 
effect for GNSS orbits. It would be interesting to see a future 
generation of GNSS with accelerometers.
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Forces acting satellites in overview

LEO Orbits: Orbit errors after one day when not taking into 
account particular perturbations.
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Forces acting satellites in overview

GNSS Orbits: Orbit errors after one day when not taking into 
account particular perturbations.


