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2. GENERAL 
 

2.1. Introduction 
 
This document contains a general and complete description of the algorithms used to process space data in 
the GINS (Géodésie par Intégration Numérique Simultanée) orbitography software. The codes change more 
quickly than the equations and we have deliberately limited the software descriptions in order to focus on the 
description of the algorithms and models. 
 
This is not a document about orbitography in general or about all the possible applications of space geodesy. 
It is the algorithmic documentation of the GINS software. We have limited the scope to the description of the 
algorithms that were actually present in GINS at the start of 2012. The algorithms described in this document 
have all been validated and used for precise applications in recent years. 
 
The organization of the GPS data processing in GINS is partially linked to the history of the software. The 
GINS software was initially designed during the 1970s to process the space geodesy data that was available 
at that time. The software could only process one satellite at a time. In the early 1990s, the software was 
enhanced to include satellites of the GPS constellation and to process data from receivers both onboard and 
on the ground. At the end of the 1990s, it became "planetary" and acquired the capacity to process the DSN 
(Deep Space Network) tracking data of satellites orbiting around bodies other than the Earth (Mars, Venus, 
planetary satellites, asteroids). More recent changes, made since 2000, have attempted to improve the 
reliability and the calculation times of the software for the routine processes of space gravimetry missions 
(CHAMP, GRACE, GOCE) or the DORIS, GNSS, LASER and VLBI data processes for the kinematics and 
the terrestrial reference system as part of the GRGS's contribution to international services (IGS, IDS, ILRS, 
IVS). In the course of these 15 years, the software has constantly followed the changes in international 
standards and the algorithms have been improved constantly in order to improve the models. The main 
applications of the software include the use of space geodesy measurements to recreate the precise orbit of 
satellites around different bodies in the solar system, the processing and interpretation of satellite data from 
missions to observe the gravity field of bodies in the solar system and the precise positioning of stations in 
satellite-based tracking systems used to build reference systems and to determine rotation parameters. 
 

2.2. General principle of the GINS software 
 
The GINS software is used to calculate the precise trajectories of artificial satellites around a body in the 
solar system by the numerical integration of the fundamental equation of the dynamics, based on knowledge 
of the forces acting on the satellite. There are two types of forces: 
 
 Gravitational forces: gravity field, third bodies, solid and oceanic tides, the gravitational effect of 
variations in atmospheric pressure, etc. 
 Non-gravitational forces: atmospheric friction, direct and rediffused solar pressure, thermal 
emissions, etc. 
 
These trajectories are expressed in a reference system related to the central body (e.g.: ITRF) or in the 
celestial reference system (e.g.: ICRF). 
 
The trajectories calculated by GINS or provided by external sources are used to make comparisons with the 
satellite tracking measurements taken from ground stations or from other satellites. Theoretical 
measurements are then built using the very precise knowledge of the position of the ground stations and their 
movements due to plate tectonics and loading phenomena. 
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The reconstituted theoretical measurements are then compared with the actual measurements. GINS can 
process the following types of measurements: distance (Laser), Doppler (DORIS), angular, GNSS (GPS, 
GLONASS, GALILEO, etc.), interferometric (VLBI), altimetric, ephemerid, inter-satellite (GRACE), 
accelerometric and gradiometric (GOCE), plus interplanetary range and Doppler measurements (DSN or 
ESA networks), etc. 
 
The deviations between the actual and theoretical measurements are minimized by adjusting the physical and 
empirical parameters in a least squares iterative process. The most common physical parameters are the 
rotation parameters of the Earth or the central body, the coordinates of the stations, the coefficients of the 
gravity field, etc. Since some of these parameters cannot be resolved with a single orbital arc, the linear 
system is calculated and stored in convergence in the form of a normal equation. The normal equations are 
then processed by the DYNAMO chain (accumulation, reduction, resolution, etc.). 
 
The GINS software can also work in simulation mode to study the capacity of new missions to restore 
different physical parameters. 
 
The main outputs of the software are: 

• a list describing the calculations 
• the ephemeris of the satellite(s) 
• the normal equation 
• a file of statistics used to produce graphs 

 

2.3. Structure of the GINS software 
 
The general structure of the GINS software is shown in Figure 1. The global residuals are reduced in the 
iterations until convergence is achieved. The partial derivatives of the free parameters are calculated in 
iteration 1 and upon convergence, at which point additional parameters can be included.  
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3. TIME and SPACE REFERENCE 
 

3.1. Units, time scales and date systems 
 
The GINS software uses the International System units. International Atomic Time (IAT) is used for Earth 
and Barycentric Dynamical Time (BDT) is used for all other solar system bodies. The modified Julian date 
1950.0 (01/01/1950) is used as the origin of the dates. The origin of the dates is converted to the integer date 
at the start of the arc for internal calculations. In general, the input data are converted to IS and IAT units 
when being read. The values in the output files (orbits, normal equations, residual files) are also expressed in 
IS units. Certain numerical values in the listing file may not be in IS units for better readability. 
 
The following date systems are found in the various input and output files: 

calendar dates: DD/MM/YYYY or DD/MM/YY. 
calendar dates: DOY/YYYY = Day of Year/Year  
Julian dates 1950 (JUL50) = days after 01/01/1950 at 0h 
Julian dates J2000 = days after 01/01/2000 at 12h 
Julian/Gregorian dates = J2000 dates + 2451545 days. 
modified Julian dates (MJD) = J2000 date – 51544.5 (days) 
GPS dates: WWWW/D = GPS week and day of the week (from 0=Sunday to 6=Saturday, week 1 = 
week starting 13/01/1980). 
 

and the various time scales: 
 

UTC (Coordinated Universal Time). The relation between the UTC and the IAT depends on the date in 
question (UTC = IAT – 34 s at the start of 2011). 
IAT = International Atomic Time  
GPS time (GPST = IAT-19 s) 
BDT = Barycentric Dynamical Time 
TT = Terrestrial Time (TT=IAT +32.184 s) 
 

Where necessary, GINS performs the conversions between the various time scales and date systems. The 
online jjul program can be used to switch from one date system to another in order to make the conversions. 
 

3.2. Coordinates/Coordinate systems 
 
The central body is the body around which the orbit calculations are to be made. The main reference system 
is the system the origin of which is at the centre of mass of the central body and whose axes are oriented 
according to the usual international conventions, usually J2000 when the central body is Earth (Petit and 
Luzum, 2010). The central body may be Earth or any other body in the solar system implemented in the 
software. GINS uses Cartesian coordinates (x,y,z) for most calculations, but some inputs (or outputs) use the 
other usual coordinate systems found in space geodesy that are used to model the motion of the satellite or to 
make specific calculations regarding the central body. 
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Figure 2: Geographical coordinate systems 

 

3.2.1. Ellipsoidal coordinates ϕ, λ, h / reference ellipsoid 

 
The closest mathematical surface to the surface of a rotating body (the Earth or a planet), ignoring the 
topography, is that of a revolution ellipsoid, or of a sphere that is flattened at its poles. Revolution ellipsoids 
are characterized by the lengths of its two main radii: a (equatorial semi major axis) and b (polar semi minor 
axis) or, in an equivalent manner, by the semi major axis and the oblateness f = (a-b)/a. The ellipsoidal 
coordinates are the ellipsoidal latitude (ϕ measured positively from South to North), longitude (λ  measured 
positively from West to East) and the height (h) above the ellipsoid. Subroutines convert Cartesian 
coordinates to ellipsoidal coordinates (xyzflh and flhxyz) whenever necessary. The values of the semi major 
axis a and the oblateness f are specified in the station file (with the list of coordinates). 
 
Spherical coordinates 
 
In the case of a sphere (zero oblateness), the spherical coordinates are usually linked to the rectangular 
coordinates according to (r = a + h): 
 

λϕ coscosrx =  
λϕ sincosry =  

ϕsinrz =  
where r = a + h is the distance between the point in question and the origin of the reference.  
 

3.2.2. Local coordinates (azimuth / elevation) 

 
The local coordinates are angles used to indicate the direction of a point in relation to an observer or a 
geodesic instrument. The elevation is the angle between the local normal and the direction of the observed 
object and the azimuth is the angle between the direction of the object projected in the local horizontal plane 
and a reference direction. For observers on the central body, the reference direction is North. Local 
ellipsoidal coordinates often use the normal of the reference ellipsoid as the local normal. 
 
These coordinates are also used to describe the sight angles of the antennas of onboard instruments. In this 
case, the reference normal is the major axis of the antenna. The reference direction for azimuths is defined by 
a direction given in the satellite reference, which depends on the case in question.  
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3.2.3. Keplerian orbital elements 

 
The six keplerian orbital elements are used to describe the orbits of objects around a central body (see Figure 
3).  

 
 

a: semi major axis 
e: eccentricity (b = a (1-e2)1/2) 
i: inclination 
ω: argument of perigee 
Ω: argument of the ascending node 
M: mean anomaly (M = n(t-t0)) 
(where n = dM/dt: mean motion and 
T = 2 π/n: orbital period) 

 
Figure 3: Definition of the keplerian elements 

 
The elements are used to define the form of the ellipse that is tangential to the orbit (elements a and e), its 
orientation in the reference linked to the central body (elements i and Ω), the position of the perigee of the 
ellipse (ω)) and the position of the object on the ellipse (angle M, counting from the perigee). In unperturbed 
movements (the object in orbit is only subjected to a central attraction of the central body), all of these 
elements are constant, apart from the mean motion, which varies in linearly over time. In general, these 
elements vary slowly over time as a function of the perturbing forces. An osculating orbit can be defined at 
any point of the orbit using its instantaneous keplerian elements. With conventional formulae, the keplerian 
elements of the osculating orbit are replaced by the instantaneous vectors of position and speed of the orbiter, 
and vice versa (Brouwer, 1961). The orbits of most geodetic satellites are close enough to circular orbits (i.e. 
low eccentricity), but the altitudes and the inclinations may vary significantly, depending on the required 
properties (see Table 1).  
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satellite a (metre) e i (degree) 
Beacon-B  7500000. .024 41.200 
Champ  6823250. .003000 87.274 
Cryosat-2  7093646. .001952 91.996 
Diademe-1C  7190000. .038000 39.940 
Diademe-1D  7533000. .076000 39.450 
Envisat / ERS-1 
/ERS-2 

7159500. .001384 98.547 

Etalon-1  25503150. .000900 65.313 
GPS  26400000. .001000 55.000 
Grace-A (Tom) 6865000. .002400 89.01 
Grace-B (Jerry) 6840700. .002400 89.05 
HaiYang-2A  7341800. .001370 99.303 
Jason 1/2 7714431. .000599 66.073 
Lageos  12273000. .004000 109.800 
Lageos-2  12162064. .01400 52.000 
Meteor-3  7572500. .001800 82.560 
Nova-3  7553000. .003500 90.040 
Spot (s)  7200514. .00141 98.703 
Starlette  7331000. .02000 49.800 
Stella  7176760. .00106 98.683 
Topex/Poseidon  7714278. .000095 66.039 
Westpac  7202076. .001200 98.752 

 
Table 1: Orbit parameters of a selection of geodetic satellites 

 

3.2.4. Satellite RTN local orbital coordinates 

 
These coordinates are defined locally on the basis of the trajectory of the satellite. The direction is aligned 
towards the centre of the central body, the normal direction is perpendicular to the orbit plane and the 
tangential direction completes the right-handed orthogonal frame (see Figure 2). This coordinate system is 
used in particular to project the differences between two computations of a trajectory.  

 
 

Figure 4: Graphical representation of the local orbital coordinate system of a satellite. The radial, 
normal (cross-track) and tangential (along-track) directions are defined at each point of the orbit. 

 

3.2.5. Coordinates linked to the satellite 

 
Each satellite has its own specific coordinate system that defines the coordinates of the various components. 
The origin and the major axes of this reference system depend on the satellite and are closely linked to the 
satellite's attitude law. The coordinates (instruments, orientation of the satellite's surfaces, etc.) are specified 
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in the file of satellite macro models (see section 3.3). In some cases, the satellite's barycentre is at the origin 
of this coordinate system.  
 

3.2.6. Central body 

 
The central body (planet in the solar system, planetary satellite, asteroid or the Sun) is specified in the 
Director file. It defines the reference used for the calculations. The possible bodies are the Earth (the default 
central body), Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, the Moon, Phobos, Eros, 
Wirtanen, Chury, and the Sun.  
 

3.2.7. Changes of reference 

 
A set of position and speed coordinates (P1, V1) expressed in reference frame 1 will be converted into a set of 
coordinates (P2, V2) expressed in reference frame 2 by transformation relations involving the rotation matrix 
M (t) between the two references: 
 
P2 = M (t) P1 
V2 = M (t) V1 + dM (t)/dt M (t)-1 P2 

 
In most of our cases, we use two main reference frames: a reference linked to the central body and an inertial 
reference (J2000), in which the dynamic calculations are made, thereby avoiding the need to model the 
rotational accelerations. In some cases, other coordinate systems have to be taken into consideration 
simultaneously, for example in order to process the DSN data between an orbiter around a planet and the 
ground stations, where three references, plus the laws of transformation (translation, rotation) between the 
references, are used: the reference linked to the planetary body, the terrestrial and planetary inertial 
references and the terrestrial reference, in which the coordinates of the DSN stations are expressed. The 
precise modeling of very long base interferometry (VLBI) measurements and planetary measurements uses 
the barycentric reference of the solar system.  
 

3.2.8. Celestial reference system for the Earth and Earth rotation 

 
GINS uses the J2000 celestial reference system defined by the IERS Conventions (McCarthy and Petit, 2004, 
Petit and Luzum, 2010). The transformation matrix between the terrestrial reference and the celestial 
reference is used to pass between the celestial reference system (CRS) and terrestrial reference system 
(TRS). This matrix is usually written as follows: 
 
[TRS]  = M (t) [CRS] = W (t) R (t) Q (t) [CRS] 
 
W (t): polar motion matrix. This depends on the observed coordinates of the terrestrial pole xp,yp 
 
R (t): rotation matrix of the Earth around the axis linked to the pole. This depends on the observed 
corrections for the angle of Earth rotation (dUT1) 
 
Q (t): rotation matrix based on the motion of the celestial pole in the celestial reference system, also known 
as the precession-nutation matrix. This depends on the observed corrections of nutation (Dψ, Dε or DX, DY) 
(depending on the selected form) 
 
The observed corrections to the rotation model xp, yp, dUT1, Dψ, Dε or DX, DY or EOP (Earth Orientation 
Parameters) are included in the pole file in the environment block of the Director file (pole line). 
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GINS can compute Earth rotation in a number of ways (see the User Manual): 
 

• either using the conventional representation based on the IAU 1996 nutation model and using the 
correction to the nutation model Dψ Dε delivered by the IERS (file EOP97C04_ITRF2008). The 
amplitude of these corrections is around 80 mas (arc milliseconds); 

 

• or by using the conventional representation (Dψ Dε), or NRO (X Y) based on the IAU2000/IAU2006 
nutation models and the observed corrections in relation to the DX/DY nutation model delivered by 
the IERS (file EOP97C04_NRO_ITRF2008). The amplitude of the latter corrections is less than one 
mas. 
 

The IERS has recommended the second formulation since the early 2000s. The advantages in terms of the 
prediction of the nutation model are quite obvious. In the absence of any corrections, the IAU2006 nutation 
model reduces the nutation errors to about 1 mas, which corresponds to an angle of ~3 cm on the surface of 
the Earth. Model IAU2006 of the Earth rotation matrix M (t) and its derivatives with regard to the rotation 
parameters is calculated using the Standards of Fundamental Astronomy library (SOFA, see 
www.iausofa.org, Code fortran f77 [Released 2010-12-01]). The movement of the pole (xp,yp) includes the 
diurnal IERS corrections read in the pole file, the diurnal and sub-diurnal correction caused by ocean tides 
and the prograde corrections of the diurnal and sub-diurnal librations. The EOPs read in the pole file, the 
tabulated values of the nutation models and the rapid corrections of the pole movement are interpolated on 
the requested date. 
 

3.2.9. Barycentric reference systems 

 
This coordinate system is the reference system used to express the coordinates of extragalactic objects. In 
particular, it is used in the modeling of VLBI measurements in order to identify the coordinates of quasars as 
a function of their right ascension and their declination (see below). The Lorentz transformation is used to 
switch from the J2000 reference system to the barycentric reference system. 
 

3.2.10. Planetary reference systems 

 
The planetary rotation vector is defined by two angles α (right ascension) and δ (declination) relative to the 
J2000 terrestrial equator (inertial). The plane that is orthogonal to the vector of rotation defines the mean 
planetary equator of the body, which may feature geometric nutations (trigonometric terms). Therefore, 
unlike the definition for the Earth, the term "mean" shall stand for "no motion of the pole" of the body in 
question, i.e. the previously defined celestial equator always coincides with the physical equator that is fixed 
relative to the body. 
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Figure 5: Diagram representing orientation angles α  and δ  

 

3.3. Planetary ephemerides 
 
The ephemerides of the bodies in the solar system (required for the transformation of Earth-planet references 
or to calculate the gravitational forces induced by these bodies) are provided in the J2000 reference by the 
DE403/405 models (Standish, 1998) or the INPOP models from the Institut de Mécanique Céleste et de 
Calcul des Ephémérides (Fienga et al, 2011). The file of planetary ephemerides assigned in the environment 
block of the Director file (planet line). 

4. CALCULATION OF TRAJECTORIES 
 

4.1. Numerical integration 
 
The fundamental equation of the dynamics must be integrated in order to calculate the trajectory of the 
satellites: 

∑=
n

irrA
dt
rd ),,(2

2

α  

where: 
 
𝑟, 𝑟, !

!!
!"!

 : the position, speed and acceleration vectors of the satellite, A  the sum of the forces acting on the 
satellite and αi, the adjustable parameters on which the n forces depend. 
 
We also want to adjust the position and speed of the satellite at the starting point of the orbit calculation and 
the dynamic parameters, which depend on the forces. This involves deriving the above expression in order to 
obtain the so-called variations equation. This produces: 

 

w 

X π /2 + α  Eq.T.J2000 
π /2 - δ  

x 

Xγ  = R3(π /2 + α ) . R1(π/2 - δ) . R3(w) . x 
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The Cowell method is used to integrate these differential equations. This multistep numerical integrator is 
built on m constant intervals (Barriot, 1988). The order of the Cowell integrator is variable (usually 8 or 10) 
and the duration of the integration interval depends on the minimum detectable period of the perturbations 
(typical values range from 10 seconds for the satellites closest to Earth to 300 seconds for GNSS satellites). 
Note that this technique can be used to integrate circular or eccentric orbits, but in the later case, a 
regularization is required to integrate in terms of anomaly angle rather than time. The amplitudes of the 
various accelerations vary according to the satellites in question (see Figure 6). The various forces taken into 
consideration are presented in the following sections.  

 
Figure 6: Some examples of the amplitude of the acceleration taken into consideration for the 

numerical integration of the movement (the min. and max. values in the course of the arc are entered 
for each satellite). 

 

4.2. Gravitational force models / Free parameters 
 
The description of the force models, or more precisely of the accelerations, is taken from the documentation 
in the "Obelix" numerical library that brings together and describes in greater detail all the force models in 
the GINS software. 
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The calculation of the potential of the central body (of the associated force and its derivatives) forms the 
basis of the calculation of all the accelerations deriving from a potential and that can be expressed in 
spherical harmonic functions. 
 

4.2.1. The potential of the central body 

 
The gravitational acceleration of the central body is derived from a potential that is conventionally expressed 
in a system of spherical coordinates. 
 
If is written using spherical harmonic functions for r ≥ ae, in the following form: 

∑∑
=

+⎟
⎠

⎞
⎜
⎝

⎛=
max

0
)sincos)((sin

l
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where  µ = GM : from the model of potential 
 )(sinϕlmP  : normalized Legendre function 

 lmlm SC ,   : normalized Stokes coefficients taken from the model of potential 
 ae  : semi-major axis of the central body 

(r,ϕ,λ)  : spherical coordinates of the satellite 
l and m are respectively referred to as the degree and the order of the Legendre functions or of the Stokes 
harmonic coefficients. 
 
The acceleration is calculated in the rotating frame linked to the central body: 𝑎 =    !"

!"
, !"
!"
, !"
!"

. In practice, 
the derivation is initially calculated in a system of spherical coordinates, then restored in the system of 
Cartesian coordinates (x,y,z). 
 
The gradient of the acceleration !!!
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, !
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, !
!!
!!!

 and the temporal derivatives of the potential are also 
calculated if necessary, if these coefficients are variable over time. 
 
Free parameters of the model 
 
The gravity field of a body is defined for a given µ and ae. All the other coefficients of the field (Cl,m / Sl,m) 
are free. Partial derivatives are calculated using the following expressions: 
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𝐻!! : Helmoltz polynomials 
 

4.2.2. The potential of perturbing bodies 

 
A perturbing body is any celestial body, other than the central body, that exercises a gravitational influence 
on the satellite. For satellites in Earth orbit, the Moon, the Sun, Mars, Jupiter, etc. are perturbing bodies. For 
a satellite orbiting Mars, the Sun, Jupiter, the Earth, etc. are perturbing bodies. Since the movement of the 
satellite is studied in a reference system linked to the central body, it is in fact the differential attraction 
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exercised by the central body, or bodies, between the satellite and the central body that must be taken into 
consideration. In practice, the accelerations of all the central bodies in question are added together.  
 
Central term of the acceleration of a perturbing body 
 

 
 

C is the central body, S is the satellite, P is a perturbing body and O is the origin of an inertial reference. If 
bodies C and P are considered as isolated, then the differential acceleration of the satellite perturbed by body 
P is: 
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This quantity is referred to as the central term of the acceleration. 
 
Coupling term of the acceleration of a perturbing body 
 
The hypothesis of the point-mass for both body is too reductive to take account of the observed perturbing 
acceleration. A coupling term of the acceleration is added (limited to the C20 coefficient of the harmonic 
development of the potential of the central body) in the following form: 
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Note: no parameters are free for this model. 
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4.2.3. The potential of Earth tides 

 
The acceleration of Earth tides is derived from the deformation potential of the central body, of degree 2 and 
3, under the gravitational effect of the perturbing bodies. Deformation potential is made up of four terms: 
 kUU =  : Earth tide potential 

 kUδΔ+  : frequency dependent correction of the Love numbers 

 ellUΔ+   : correction of ellipticity 

 poleUΔ+  : correction of Earth polar tide (described in section 3.2.5.) 
For a point S(r,ϕ,λ) around the central body, the perturbing gravitational potentials written in the form of a 
development in spherical harmonics (of the order of 3): 
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Where µ is the gravitational constant of the central body and ae is the mean equatorial radius of the central 
body. The harmonic coefficients of the potential 𝐶!"   𝑡 , 𝑆!"(𝑡) (of degree l and order m) depend on the 
position of the perturbing body (𝑟!, 𝜆!,𝜑!), the Love numbers (complex) of the deformation klm and the 
gravitational constant µp of the perturbing body, as per: 
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The frequency dependent correction is added to the preceding model in order to take account of the 
frequency of excitation of the perturbation. This model requires the use of a tides formalism, where C2m(t) / 
S2m(t) are expressed by Doodson formulae (Petit and Luzum, 2010) as a function of the argument θs of the 
wave of the tide in question and the amplitude Hs of the balancing tide: 
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The number of tide waves taken into consideration depends on the modeling process (IERS 1996, IERS 
2003). 
 
The ellipticity effect of the terrestrial potential introduces corrections into C4m and S4m (m=0, 1, 2) that 
depend on the corrections of ellipticity of the Love numbers k+

2m: 
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Free parameters of the mode 
l 
The degree 2 Love numbers (real and imaginary parts) used in the calculation of the degree 2 Earth tide 
potential can be freed. 
 

4.2.4. The potential of fluid tides 

 
The fluid tide potential is induced by the movement of masses of water under the effect of the potential of 
the perturbing bodies. This movement is not only radial and the horizontal displacement is highly perturbed 
by the presence of the continents. The potential itself is calculated at one point S(r,ϕ,λ) on the basis of the 
surface density q(ϕ,λ) developed in spherical harmonics (of coefficients 𝑞!"!   and  𝑞!"! ) as per: 
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The coefficients of surface density q are obtained by the product of the density of the water ρ by the depth 
of water, which is the result of an addition on all the tide waves: 
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The various waves are characterized by their astronomical argument ( )tnθ  and their Doodson-Warburg 

phase nχ  and their coefficients −+−+
lmnlmnlmnlmn SSCC ,,,, ,,,  are provided by the selected tide model. A distinction 

is made between long-period waves, diurnal waves and semi-diurnal waves. They are split between main 
waves (whose amplitudes are provided by the model) and secondary waves whose amplitudes are calculated 
by admittance. 
 
Load of the atmospheric tides 
 
The physical considerations are equivalent to those defined for ocean tides.  
 
Free parameters of the model 
 
The tide coefficients of the waves used as input for the model can be freed. 
 

4.2.5. The potential of solid and ocean polar tides 

 
The correction of the solid polar tide models the solid Earth's response to the rotational movement. It is 
calculated like the other forces of gravity using spherical harmonic coefficients and depends on the position 
of the rotation pole relative to the mean pole xp,yp as per: 
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where 𝑘! is the Love number of the solid polar tide and w1, w2 are the response coefficients, which depend 
on the selected model. 
 
As is the case for solid polar tides, the ocean polar tide models the deformation of the oceans under the 
influence of the variations in the rotation movement. The general form, used by Desai's model, is given by 
the harmonic coefficients: 
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The coefficients (Ar/Ai and Br/Bi) are provided up to degree 360 and degree 2 represents 90% of the effects 
(Desai, 2002). 
 
Free parameters of the model 
 
The Loveumber of the Earth polar tide can be freed. 
 

4.2.6. The potential of atmospheric pressure variations 

Displacement of atmospheric masses induces a potential which can be written as a single layer potential 
including the deformation due to the loading (see previous chapters for notations). 
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Mass distribution is represented by the loading coefficients s

lm
c
lm qq , . 

If s
lm

c
lm PaPa ΔΔ ,  are the coefficients of the spherical harmonic development of atmospheric pressure 

variations the loading coefficients can be written as follows: 
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with g the g-force at the surface the body ( ~9.81ms-2 for the Earth). 
 
Using the following formulas:  
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We can use the expression of the potential of the central body (see chapter 4.2.1). 
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4.2.7. Relativistic forces 

 
The movement equations of the satellite are integrated in terms of non-relativistic mechanics. In this 
formulation, and as long as the conditions remain "reasonable", the relativistic effects intervene as 
perturbations of the second order. The relativistic force model is introduced to take these perturbations into 
consideration. The model used (Huang et al., 1990) comprises three terms: the Schwarzschild term (the most 
important), the relativistic Coriolis term (or geodetic precession) and the Lense-Thirring term (relativistic 
effects due to the rotation of the central body). These terms are expressed as follows: 
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 where  zEarthEarthEarth uRJ 
×Ω××= 2

5
2   (standard model) 

 where  zEarthuJ 
8108,9 ×=    (IERS 2010 standard) 

where:  
r  : the position of the satellite in an inertial reference 

centred on the central body 
v  : the speed of the satellite in an inertial reference 

centred on the central body 

Sunr


 : the position of the Sun in an inertial reference 
centred on the central body 

Sunv


 : the speed of the Sun in an inertial reference centred 
on the central body 

J

 : angular moment of the central body by unit of 

mass 
standard formulation: the central body is 

considered as a homogeneous sphere 
IERS 2010 formulation: integration of the 

non-homogeneous character, for the Earth 
only. 

EarthΩ  : represents the rotation speed of the central body on 
itself 

zEarthu  : unit vector according to the rotation axis of the 
central body in the positive direction relative to the 
rotation. 

4.2.7.1.1.1.1. β,γ 4.2.7.1.1.1.2. : 
PPN parameters equaling 1 in the theory of general 
relativity 

 

4.3. The macro models 
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4.3.1. General 

 
The macro model brings together all the input used to physically describe the satellite and to model its 
interactions with space (see the example in Figure 7). It contains the geometry (type of surfaces, size, 
positions and orientations), its physical characteristics (mass, thermo-optical properties of the surfaces), the 
characteristics of the onboard instruments (type, positions of the phase centres in the satellite reference, 
orientation of the antennas), the attitude model to be used (see section 3.4) and the numbers used in the 
measurement files (Cospar numbers, Prn, Prv, etc.). 
 
In GINS, this data is read in a macro model file containing the description of all the satellites that the 
software knows. 
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Figure 7: Diagram representing the Topex satellite (credits: NASA). The macro model contains the 
geometrical description of the satellite. 

4.3.2. Surfaces and optical properties 

 
The macro model (or Box & Wings model) describes the satellite as a set of surfaces defined by their type 
(see Table 2), their orientation in the satellite reference and their thermo-optical properties. These 
characteristics can be used to calculate the non-gravitational forces (see section 3.5). Three optical 
coefficients without units are used to calculate the reflectivity of the surface to the incident radiation: the 
absorption coefficient KA, the coefficient of diffuse reflection KD and the coefficient of specular reflection KS. 
They are linked by the relation KA + KD + KS = 1. (only the coefficients of specular reflection and diffuse 
reflection are entered in the macro model file). A second set of coefficients is provided to calculate the infra-
red reflectivity. A final coefficient of emissivity ε and the temperature law are used to calculate the thermal 
emission associated with each of the surfaces. 
 

Type of surface Normal Other geometric 
characteristics 

Plate Normal external to the plane Surface 
Sphere N/A Radius of the sphere 
Cylinder Axis of the cylinder Surface 
Parabola (1) Axis of the parabola Radius and focus 
(1) In practice, the parabola is automatically broken down into n plate-type triangular 
facets. 

 
Table 2: Types of known elementary surfaces in GINS for the geometric description of satellites. 
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4.4. Attitude of the satellites 
 

4.4.1. General 

 
The attitude law of a satellite or an orbiter is the law used to switch from the integration reference (usually 
J2000) to the reference linked to the satellite, in which the various specific characteristics of the satellite are 
expressed (see 3.3). The actual attitude can be measured (e.g., by star trackers) and given in the form of 
attitude quaternions or, more generally, modeled by a nominal law. Most Earth observation satellites have 
more or less complicated specific attitude laws that depend on their assigned mission. These various attitude 
laws aim, for example, to maximize the exposure time of the solar panels, to minimize the number of 
manoeuvres or to respect certain constraints resulting from the onboard instruments (e.g. directing an 
instrument towards the Earth). The nominal laws are usually calculated on the basis of all or part of the 
following factors: the date, the instantaneous position and speed of the satellite (or keplerian elements of the 
osculating orbit), the satellite-Earth and Satellite-sun direction, etc. 
 
The known attitude laws in GINS are listed in Table 3. Numerical values of the attitude used can be obtained 
in the form of quaternions in the GINS tabulated orbit output file.  
 
 

Type of 
attitude law = 

the name 
appearing in 

the macro 
model file 

 

Type of attitude law 
Satellite(s) / 
Orbiter(s) 
concerned 

 

References 

4.4.1.1.1.1.1. ty
pe_cryos2 

Geodetic point positioning with a 6° 
offset in the satellite's X axis relative to 
the normal to the reference ellipsoid. 
Satellite reference X,Y,Z  T,N,R 

CRYOSAT2 (Cerri and Ferrage 
2012) 

type_topex Since the orbit is not heliosynchronous, 
a complex attitude law to obtain 
geodetic point positioning, with solar 
panels that are oriented as much as 
possible in the normal direction to the 
direction of the sun. Satellite reference 
X,Y,Z  T,-N,R 

TOPEX, 
JASON1, 
JASON2 

(Cerri and Ferrage 
2012) 

type_spot Z axis of the satellite oriented in the 
radial direction. Solar panels oriented 
towards the sun as much as possible 
(heliosynchronous orbit). Satellite 
reference X,Y,Z  N,-T,R 

Satellites 
SPOTs 
(SPOT2, 
SPOT3, 
SPOT4, 
SPOT5) 

(Cerri and Ferrage 
2012) 

type_goce Attitude given by the quaternions from 
the onboard measurements of the 
attitude sensors. 

GOCE  

type_champ Attitude given by the quaternions from 
the onboard measurements of the 
attitude sensors. 

CHAMP, 
GRACE 

 

type_cosmic Specific. COSMIC 
satellites 

 

type_ers Specific. ERS1, ERS2  
type_envisat Geodetic point positioning, Z axis 

normal to the reference ellipsoid. Solar 
ENVISAT (Cerri and Ferrage 

2012) 
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panels oriented towards the sun as much 
as possible (heliosynchronous orbit). 
Satellite reference X,Y,Z  N,-T,R 

type_diadème Specific. DIADEME_C, 
DIADEME_D 

 

type_geos3 Specific. GEOSAT3  
type_mgs Specific. Mars Global 

Surveyor 
 

type_mro Specific.   
type_mex Specific. Mars Express  
type_mo1 Specific.   
type_vex Specific. Venus Express  
type_gnss Nominal GNSS  (Kouba 2008, 2009) 
type_koubaIIR Specific to GPS IIR in eclipses. GPS IIR (Kouba 2008, 2009) 
type_koubaIIA Specific to GPS IIA in eclipses. GPS IIA (Kouba 2008, 2009) 
type_koubaIIF Specific to GPS IIF in eclipses. GPS IIF (Kouba 2008, 2009) 
type_koubaGL
O 

Specific to GLONASS in eclipses. GLONASS (Kouba 2008, 2009) 

sphérique Attitude law for spherical satellites only. LAGEOS1, 
LAGEOS2, 
STARLETTE, 
STELLA, 
AJISAI 

No attitude 

rtn General RTN attitude law: the main axes 
of the satellite are assumed to be 
oriented according to the local orbital 
RTN reference 
(Radial/Tangential/Normal) 

COURIER 1B (see section 2.2) 

 
Table 3: List of known attitude laws in GINS (January 2012) 

 

4.4.2. Attitude quaternions 

 
When the attitude is measured onboard, e.g. by star trackers, it may be accessible in the form of time series 
of attitude quaternions (four unit module values). In this case, the attitude matrix 𝑀!""(𝑡) is rebuilt on the 
basis of the quaternion 𝑞 𝑡 = (𝑞!, 𝑞!, 𝑞!, 𝑞!), according to (Hamilton, 1830): 
 

𝑴𝒂𝒕𝒕 =
𝑞!! + 𝑞!! − 𝑞!! − 𝑞!! 2 𝑞!𝑞! − 𝑞!𝑞! 2 𝑞!𝑞! + 𝑞!𝑞!
2 𝑞!𝑞! + 𝑞!𝑞! 𝑞!! − 𝑞!! + 𝑞!! − 𝑞!! 2 𝑞!𝑞! − 𝑞!𝑞!
2 𝑞!𝑞! − 𝑞!𝑞! 2 𝑞!𝑞! + 𝑞!𝑞! 𝑞!! − 𝑞!! − 𝑞!! + 𝑞!!

 

 
The time series of quaternions may possibly present all the specific characteristics of the measured data: 
noise, aberrant measurements, gap(s) in the temporal series. GINS is capable of handling some of these 
anomalies. In particular, it can validate the measurements, by comparing the attitude with a nominal law, and 
interpolate quaternions when there are gaps in the observations (provided that the gap is of a reasonable size 
in relation to the temporal variations in attitude). In some cases, the data should be pre-processed externally 
before using it in GINS. In addition to the quaternions that define the orientation of the satellite relative to 
the integration reference, quaternions are also used to direct high-gain antennas for planetary satellites. 
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4.5. Non gravitational force models / Free parameters 
 

4.5.1. Atmospheric layers 

 
The atmosphere (see Figure 8) is made up of several layers characterized by their main physical properties 
(constituents, pressure, temperature). 
 
The thermosphere: the temperature can reach 1,200°C in a rarefied atmosphere. Conductivity is low 
because the heating energy is weak. 
 
The mesosphere: from 50 to 80 km, the temperature drops as far as -90°C. 
 
The stratosphere: from 11 km to 50 km on average. Contains about 19.9% of the mass of the atmosphere. 
The temperature rises due to the absorption of ultra-violet rays by the ozone layer. 
 
The troposphere: from the ground to 16 km (in the tropics). Contains about 80% of the mass of the 
atmosphere. The gradient is -6°C/km. 
 

 
Figure 8: Diagram representing the layers of the Earth's atmosphere up to 120 km 
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4.5.2. Modeling the density of the thermosphere (DTM, MSIS models) 

 
DTM (Berger, 1997) or MSIS (Hedin, 1986) type models are semi-empirical. They are based on certain 
physical hypotheses that allow for the application of the following laws: 
 

- the equilibriums of the different constituents are independent of one another, 

- the vertical columns of atmosphere are independent of one another and in a state of statically 
balanced diffusion, 

- the parameters of the state of the atmosphere are known at the lower boundary of the 
thermosphere. 

The simplified integration of the differential equation of the static equilibrium of diffusion produces the 
partial density of each constituent of the thermosphere (H, He, N2, O, O2, etc.) according to an altitude law 
that depends on the temperature. 
 
Moreover, these models are completed by an empirical G(L) function (Hedin, 1986) that takes account of 
different parameters, such as the indices of solar flux F10.7 and of geomagnetic activity Kp, the latitude, the 
local time and the season. 
 
Solar flux is the main source that heats the thermosphere. Variations, which are linked to the number of Sun 
spots, are measured more efficiently at high or low frequencies, e.g. in the 10.7 cm radio band, or more 
representatively (but more recently) in the absorption ray of magnesium II at 280 nm. The solar wind carries 
charged particles that precipitate in the high latitudes, are trapped by the terrestrial magnetic field and heat 
the thermosphere by Joules effect. This is why the geomagnetic indices Kp or Km are used to indirectly 
represent this heating by friction.  
 

 
Figure 9: DTM-94 model: density by constituent (g/cm3) 
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Figure 10: DTM-94 model: density and temperature of the thermosphere 

 

4.5.3. Solar and geomagnetic indices 

 
• The F10.7 (2800 MHz) index represents the intensity of the solar radio flux at 10.7 cm, with a 

temporal resolution of 1 day. It is measured in units of solar flux, in which each unit equals 10-22 
Watts m-2 Hz-1, or 104 Janskys, which is the standard measuring unit in radioastronomy.  

• The AE (Auroral Electrojet) index, which characterizes the intensity of the electrojets flowing in the 
auroral ionosphere. This index is calculated on the basis of the variations in the horizontal 
components of the magnetic field, measured by 12 stations located in the auroral zone in the 
Northern hemisphere. This index is expressed in nT.  

• The Dst (Disturbed storm time) index, which characterizes the activity of the ring current, located in 
the equatorial plane of the magnetosphere at a distance of ~3 to 5 RT. Currently, the Dst is calculated 
on the basis of the hourly averages of the horizontal component H of the field observed by a network 
of four observatories that are sufficiently distant from the auroral electrojet and the equatorial 
electrojet, and are regularly spaced in longitude.  

• The PC (Polar Cap) index, which measures the DP2 magnetic perturbations in the central ice cap, is 
calculated and its relation to the solar wind parameters is studied by a linear correlation analysis. 
This index is derived from the Thule station near the North Pole and the Vostok station near the 
South Pole, and the values derived from these two stations are then compared. This index shows a 
proper correlation with the component directed towards the South of the interplanetary magnetic 
field. 

• The Kp index is established on the basis of measurements taken by several stations, located at 
latitudes between 44° and 60°. Due to the geopolitical conditions that reigned during the Cold War 
when this index was created, the stations are unevenly spread over the surface of the Earth. There are 
11 in the Northern hemisphere (four in North America and seven in Europe) and two in the Southern 
hemisphere, in Australia and New Zealand. The K indices of each of these stations are standardized 
using tables drawn up by J. Bartels on the basis of a reference sample, in order to eliminate the 
effects of variations with universal time and the season of the magnetic activity. For each three-
hourly interval, the value of the Kp index is the arithmetic mean of the standardized K indices. It is 
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expressed on a scale of 0 to 9, with a resolution of 1/3. The + and – symbols are used for non-integer 
values. For example, 5- corresponds to 4 2/3, and 5+ to 5 1/3. 

• The ap index, expressed in 2 nT units, is deduced from the Kp index using a conversion table. 
• The am index is calculated on the basis of the K indices measured by a network of 21 stations (12 in 

the Northern hemisphere and nine in the Southern hemisphere), with a corrected geomagnetic 
latitude as close to 50° as possible. These stations are grouped in sectors of longitude (five in the 
Northern hemisphere and four in the Southern hemisphere). For each three-hourly interval, the 
magnetic activity in each sector, expressed in nT, is estimated on the basis of the mean value of the 
K indices measured at the observatories located in the sector. 

 

4.5.4. Acceleration of atmospheric friction 

 
The acceleration of the atmospheric friction applied to a satellite is calculated as the sum of the frictional 
forces applying to each elementary part (flat plates, spheres, cylinders, etc.). Each part produces an 
acceleration in drag and an acceleration in lift: 

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
∧∧+⋅⋅−= ∑∑ rir

i

i
Lirir

i

i
DiD vnv

m
SCvnv

m
SCFa 

ρ
2
1 , 

where: 

4.5.4.1.1.1.1. Si 4.5.4.1.1.1.2. : 
reference surface of the body i 

m : mass of the satellite 

in


 : unit vector normal to the reference surface of the body i 

ρ : atmospheric density provided by the atmosphere model (depends 
on the position and the date) 

rv
  : relative speed vector of the satellite in relation to the atmosphere 

CDi : aerodynamic drag coefficient of the body i 
CLi 

4.5.4.1.1.1.3. : 
aerodynamic lift coefficient of the body i 

FD 
4.5.4.1.1.1.4. : 

scale factor of the frictional force (ideally equals 1) 

 
The aerodynamic coefficients are the sum of the coefficients of absorption (of gas molecules) and of 
supposedly diffuse re-emission. They are explained differently (see Obelix documentation), depending on 
the form and the temperature of the wall (Maxwell's hypothesis on the distribution of molecular speeds). 
 
Free parameters of the model 
 
A global multiplying coefficient of the force of atmospheric (or "Drag Factor", referred to as FD in GINS) is 
generally freed. The partial derivative of this coefficient is simply the acceleration itself. 
 

4.5.5. Direct solar radiation pressure 

 
The acceleration of direct solar radiation pressure is the acceleration to which the satellite is subjected due to 
the action of the received solar flux. It is calculated by adding up all the elementary radiation accelerations to 
which each of the exposed surface parts of the satellite is subjected (flat facets, cylinders, spheres or semi-
spheres), according to: 
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where: 
 

A  :  acceleration (m.s-2) 
 
CSun 

 

4.5.5.1.1.1.1. : 
 solar constant = 2

Sdc
Φ

≈ 4.5 N.m-2 

Φ : solar flux at 1 au ≈ 1367 W.m-2 
c : 

4.5.5.1.1.1.2. speed of light (m.s-2) 

S

S

D
D

 
 
: 

 
ratio between the mean/true solar distances 

Sk 
4.5.5.1.1.1.3. : 

area of face k of the satellite (m2) 

kR  : reflectivity vectorised coefficient on face k of the satellite (depends on the 
reflectivity coefficients of the face and one the angle of incidence 
lighting(without units) 

m : mass of the satellite (kg)  
Fs 

4.5.5.1.1.1.4. : 
scale factor of the solar pressure force (ideally equals 1)  

 

 
 
The transmitted solar flux Φs is supplied as an input for the software. The flux that is actually received (Φ) 
may be attenuated by the presence of one or more bodies between the Sun and the satellite (eclipses). A 
shadow function is introduced (between 0 and 1) to represent the portion of the solar flux received by the 
satellite (𝛷 =   𝛷!×shadow  function). The shadow function depends on empirical coefficients and the 
relative positions and shapes of the various objects. The description of the obstructing bodies is limited to an 
elliptical geometric description. 
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The reflectivity of each of the surfaces is calculated on the basis of the thermo-optical coefficients (see 3.3). 
From an analytical perspective, it depends on the type of surface and on the incidental direction of the flux 
on the surface. 
 
Free parameters of the model 
 
A global multiplying coefficient of the force of solar pressure (or "Solar Factor", referred to as FS in GINS) 
is generally adjusted. The partial derivative of this coefficient is simply the acceleration itself. 
 
The thermo-optical coefficients of the faces that make up the satellite can also be adjusted.  
 

4.5.6. Rediffused and infra-red radiation pressures 

 
The acceleration of rediffused radiation pressure is the acceleration to which the satellite is subjected due to 
the action of the solar flux that is re-transmitted by the central body. 
 
The part of the central body that is in the shadow does not transmit any albedo flux. If the complete sub-
satellite cap is in the shadow zone, then we consider that the satellite does not receive any albedo flux. 
 
The acceleration of infra-red radiation pressure is the acceleration to which the satellite is subjected due to 
the action of the infra-red flux that is transmitted by the central body. 
 
Each surface element transmits an albedo flux and an infra-red flux in the same direction (see Figure 11). 

 
Figure 11: Diagram of the geometry of the breakdown of the surface elements of the central body 

 
Fluxes of re-diffused and infra-red radiations are calculated either on the basis of the emissivity grids derived 
from observations (see Figure 13 and Figure 12), that are input into GINS and interpolated for the date of the 
calculation, or on the basis of mean models that can also be given in the form of a grid: 
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where   
Sel 

4.5.6.1.1.1.1. : 
area of the Earth surface element (m2) 

nel 
4.5.6.1.1.1.2. : 

number of surface elements (without units) 

Φal : albedo flux (N.m-2) 
Φir : infra-red flux (N.m-2) 
RE : mean radius of the Earth (m) 
ρal 

4.5.6.1.1.1.3. : 
albedo coefficient of the surface element (without units) 

eir 
4.5.6.1.1.1.4. : 

infra-red emissivity of the surface element (without units) 

rsat 
4.5.6.1.1.1.5. : 

geocentric satellite distance (m) 

dsat : 
4.5.6.1.1.1.6. surface element – satellite distance (m) 

χ : angle between the normal to the surface element and the direction 
of the satellite from the surface element (rad) 

Ψ : angle between the normal to the surface element and the direction 
of the Sun (rad) 

Sel : area of the Earth surface element (m2) 
nel 

4.5.6.1.1.1.7. : 
number of surface elements (without units) 

 
The acceleration of the pressure of re-diffused solar radiation on the satellite is calculated by adding up all 
the elementary accelerations (from each surface element of the central body) to which each of the exposed 
surface parts of the satellite is subjected (flat facets, cylinders, spheres or semi-spheres), according to: 
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where: 
A  : acceleration (m.s-2) 
Φel :  albedo or infra-red flux from each surface element(N.m-2) 
Si 

4.5.6.1.1.1.8. : 
area of the satellite face i (m2) 

iR  : reflectivity vectorised coefficient on face k of the satellite (depends on the 
reflectivity coefficients of the face and on the angle of incidence lighting 
(without units)  

m 
4.5.6.1.1.1.9. : 

mass of the satellite (kg) 
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It it to note that the reflectivity coefficients (for specular and diffuse reflections) are different in the visible 
spectrum (for direct or re-emitted fluxes) and in infra-red spectrum (depending on face emissivity).  
 

 
Figure 12: Example of terrestrial albedo values (March 2011) 

 
Figure 13: Example of terrestrial emissivity values (March 2011) 

 

4.5.7. Accelerometric measurements 

 
The accelerometric measurements are made by an onboard accelerometer (Touboul, 2000) that is usually 
located in the centre of the mass of the satellite. These measurements provide access to the non-gravitational 
accelerations to which the satellite is subjected. If such measurements are available, as is the case for the 
CHAMP, GRACE and GOCE satellites, the sum of the non-gravitational forces can be replaced by 
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accelerometric measurements (which may be interpolated) in the fundamental equation of the dynamics. 
Unlike the force models, these measurements are subject to noise and may include interruptions. These faults 
usually require suitable pre-processing containing elements that filter the signal and interpolation elements 
before use in the software. And like all the measurements, they must be calibrated, either at the time when 
the orbit is restored or afterwards. In an ideal case, in which the measurements are made at the centre of mass 
of the satellite, the acceleration is written in the instrumental reference (linked to the satellite) for each of the 
directions (i=1,2,3) according to: 
 

𝐴!"#,! = 𝑓!  𝐴!"#$,! + 𝑏!"#$,!          𝑚 𝑠!  
where:  
 
A!"#$,! is the component i of the uncalibrated acceleration, 
A!"#,! is the component i of the calibrated acceleration expressed in the instrumental reference, 
f!  is the scale factor associated with the component i (without units), 
b!"#$,! is the bias in 𝑚 𝑠!  associated with component i.  

 
Figure 14: Diagram representing the CHAMP satellite accelerometer 

 
The calibration parameters f and b may vary over time, depending on temperature or instrumental ageing. 
 
The acceleration is obtained in the integration reference by applying the attitude matrix to the calibrated 
accelerations: 
 

𝐴!"#$% = 𝑀!""#"$%&(𝑡)𝐴!"# 
 
The partial derivatives !!!"#$%

!!!
, !!!"#$%
!!!"#$,! !!!,!

 of the calibrat 

ion parameters are calculated at each step of the integration and are processed in the same way as the 
satellite's other dynamic parameters (see section 3.1). 
 
The accelerometric data is input into the software by attaching a file of accelerometric measurements in 
ACC-CHAMP format (Föerste, 2002) in the Director file (lines acc and ac2).  
 

4.5.8. Empirical accelerations (RTN/XYZ/stochastic/eclipses/manoeuvres) 

 
A set of empirical acceleration adjusted on the basis of the measurements is used to take the modeling faults, 
the imprecision of the models, the poor knowledge of the physical or thermo-optical properties of the 
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satellite into consideration or to model manoeuvres. Several types of empirical accelerations can be modeled 
in GINS: 

• accelerations that are constant in a given arc or period, 
• accelerations that are variable to the period of the revolution (or to sub-multiples of the period of 

revolution), 
• stochastic accelerations (or pulses) acting on an integration step. 

Either the local orbital reference (see section 2.2.4) or the satellite reference (see section 2.2.5) is used, 
depending on the satellite and the physical problems to be modeled. In practice, the periodical terms are 
calculated according to the position in orbit relative to a reference direction defined in the orbital plane, 
rather than directly using the orbital period, which is difficult to access (see Figure 15).  

 
Figure 15: Position in orbit 

 
Stochastic empirical accelerations can be added in the three directions to each integration step. Their 
amplitudes are linked by time-based correlation law. It is also possible to add only pulses at predefined dates 
(manoeuvres or exits from an eclipse, for example). These accelerations are added to the sum total of the 
other accelerations in the selected dynamic model.  

5. THE STATIONS 
 
The measuring instruments on the ground are not fixed in the reference frame related to the body. They are 
subject to all the deformations of the terrestrial or planetary crust on which they are located. The reference 
point on the ground to which each instrument is attached is referred to as the marker. The movements 
affecting the position of the marker are caused by various factors. In addition to the tectonic motion, the 
IERS conventions (Petit and Luzum, 2010) define two main classes of displacements: the effects of tides that 
can be accurately predicted (Earth tides and oceanic load) and other load effects, due to variations in 
atmospheric pressure, the humidity in the soil, etc… Most of these are unpredictable and cover the entire 
temporal spectrum but they can be accounted for by using models based on observational data. In order to 
precisely model the position of the phase centre (the geometric point at which the measurement is done by 
the instrument), many corrections have to be taken into account: the eccentricity between the marker and the 
point of reference of the antenna or instrument, the phase centre vector and any corrections to the antennas 
that model the variation in this phase centre location or even the deformation of the instruments themselves 
(for example, due to the effect of temperature).  
 

Reference guideline 
 

Position of the satellite 
 

Position in orbit 
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5.1. Tectonic displacements 
 

 
Tectonic displacements include the drift of the various plates and the deformations due to earthquakes. Drift 
can reach several centimetres per year (see Figure 16). These motions are modeled as a bias + drift over a 
given period of time. The reference system of the body is made up of a coherent set of coordinates and 
velocities of geodetic markers. For example, the International Terrestrial Reference Frame (ITRF) is the 
practical representation of this kind of system (see Altamini et al, 2011 for the realization of ITRF2008). In 
GINS, the position and the velocity 𝑝!, 𝑣!  of the marker are logged in the station file attached in the 
environment block of the Director file (“stations” line). 
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Figure 16: Horizontal tectonic ITRF2008 velocities observed using the DORIS technique, compared 

with the predictions of the Nuvel1A-NNR geological model (DeMets, 1994) 
 

5.2. Deformations caused by tides and loads 
 
The effects of tides and loads make up all the deformation effects of the crust. They cause the coordinates of 
the stations to vary. GINS features a number of deformation models that are consistent with the standards 
(Petit and Luzum, 2010).  
 

5.2.1. Earth tides 

 
Earth tide deformation caused by the attraction of the Moon and the Sun is proportional to the gravitational 
potential generated by these bodies at the point of the deformation, and takes account of the elastic character 
of the Earth, represented by the Love/Shida numbers of vertical/horizontal deformation (hn/ln, n=2.3). In 
vectorial terms, it is represented by: 
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The corrections for the ellipticity of the Earth, for the frequency and for the visco-elastic delay, as described 
in the IERS 2010 Conventions, are then added. The correction of the Earth's ellipticity is applied to the 
Love/Shida numbers h2/l2 by the introduction of an additional term that is proportional to the Legendre P20 
polynomials. Taking the visco-elasticity into consideration requires complex Love numbers to be taken into 
account that express delays in deformation. Finally, the small oscillations of the Earth that cause the Love 
numbers to resonate, mainly at frequencies close to the diurnal and long periods (see Mathews et al.) are 
taken into consideration. 
 
Note that the application of Earth tide deformation in this form also takes permanent zonal deformation into 
consideration and implies that the terrestrial reference is in a so-called “tide-free” system. 
  



 
 

 

35 

5.2.2. Polar tides 

 
The polar tide is driven by small movements of the rotation axis of the Earth described by the polhode. The 
movements of polar Earth tides are calculated according to the resulting axifugal potential and the degree 2 
Love/Shida numbers of elastic deformation: 
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The variables pp y,x  represent the difference between the coordinates of the pole and the centre of the 
polhode, which is more or less aligned with the axis of inertia. 
 

5.2.3. Surface loads 

 
The displacements of water masses due to oceanic tides or variations in oceanic currents, or even continental 
waters, result in a change in the superficial load per unit of surface to which the Earth responds elastically (in 
an opposing movement). The same applies to the variations in atmospheric pressure. The deformation for 
each tracked site is calculated outside GINS by the Green operator, a convolution integral between a Green 
function (including the Love/Shida load numbers) and a load model, or by a spherical harmonic development 
when the load is developed in this base. 
 
The following load models are used: 
 

• The oceanic tides from a “FES” model. In this case, the displacement is given for each site by 
amplitude and phase for each main wave of the model (semi-diurnal, diurnal and long period).  

• The continental atmospheric pressure calculated on the basis of the ECMWF pressure fields or 
models. 

• The inverse non-barometer response on the basis of the MOG2D model. 

• And possibly, a hydrological load model. 

When models other than tide models are used, the displacements of each site are given in a temporal series 
according to the resolution of the model. 
 

5.3. Calculation of the phase centre of the instruments on the ground 
 
The coordinates of the phase centre for a ground station are calculated in the reference frame of the central 
body (Earth, Mars, etc.) by adding up all the corrections at the signal reception date t (tectonic 
displacements, Earth tides, deformation due to oceanic load, deformation due to atmospheric load, 
eccentricity vector and phase centre vector between the marker and the phase centre of the measurement), 
according to: 
 

𝑝!"#"$%& = 𝑝! + 𝑣! 𝑡 − 𝑡! + ∆𝑝!"#$%  !"#$ + ∆𝑝!!"#$%!  !"#$ + ∆𝑝!"#.!"#$ + ∆𝑝!"" + ∆𝑝!"# 
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The effects of Earth tides are always taken into consideration. The application (or not) of corrections in 
oceanic and atmospheric load are controlled by the Director file.  

6. MEASUREMENTS / FREE PARAMETERS 
 

6.1. The theoretical quantity of the measurement – general 
 

6.1.1. Travel time/ Geometric distance 

 
The travel time of an optical or radio signal is incorporated in most measurements. It is modeled in 
GINS in the same way for all range (Laser, DORIS, etc.) or range differences (GNSS) 
measurements. It includes the geometric travel time, to which relativistic corrections of signaletic 
element propagation and the delays that occur when crossing the atmosphere (for ground receivers) 
are added. For interplanetary measurements (DSN), corrections of the propagation in the 
interplanetary medium (plasma) and in the vicinity of the solar corona are also applied. The 
tropospheric, ionospheric and relativistic delays are described in detail below (see 5.3, 5.4 and 5.8). 
The travel time is broken down into four terms, according to: 
 

𝜏 = 𝜏!"#$ + 𝜏!"#$% + 𝜏!"#$# + 𝜏!"#" 

 
The geometric travel time is obtained directly from the geometric distance 𝑑!"#$ = 𝑐𝜏!"#$ , which is 
calculated by the teodist function that is common to most measurements. This function returns the distance 
between any two objects (orbiters, stations, quasars) according to their position at the instants of emission 
and reception t1  and t2: 
 

𝑑!"#$ = 𝑃!"#$%&! 𝑡! − 𝑃!"#$%&! 𝑡!  
 
The date on which the geometric distance is calculated depends on the measurement (for example, date of 
emission, of reception or of the laser echo). This function also calculates the elementary partial derivatives of 
this distance in relation to the required parameters (Xi) 

!"!"#$
!"!

 on the date of the measurement. 
 
The precise positions are the coordinates of the phase centres of the measuring instruments (for laser, 
DORIS, GNSS, VLBI, GRACE-KBR, etc. measurements) or the centre of mass (for ephemeris 
measurements). They, and the partial derivatives that can be calculated, depend on the type of object in 
question (see Table 4).  
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Type of object Date of the event Point used to calculate 

the distance 
List of calculated 
partial derivatives 

receiver/transmitter 
onboard a satellite  
 

Date of emission or 
reception 
Estimated date of the laser 
echo on the retroreflector 
Date of the ephemeris 
measurement 

Phase centre of the 
instrument for GPS, Laser, 
DORIS, SST –GRACE 
measurements 
Mass centre (for 
ephemeris measurements) 

Dynamic parameters 
(bulletins, forces) 
Derivatives of the phase 
centre of the instrument 

ground 
receiver/transmitter 
(station)  

Date of emission or 
reception 
 

Phase centre of the 
instrument 
The position of the station 
is given by the sum total 
of the displacements in 
question (see 4.3)  

Coordinates and 
velocities of the station 
marker 
Rotation parameters of 
the body (EOP in 
terrestrial cases) 
Tropospheric parameters 

geocentre Date of the ephemeris 
measurement 

Centre of the Earth  - 

ocean surface Estimated date of the 
moment when the signal is 
reflected on the ocean 
surface  

Point of reflection of the 
signal on the ocean 
surface (altimetry / 
crossing points) 

Sea height 

quasar Date of the measurement 
(in J2000 quasar 
coordinates are considered 
as fixed) 

No calculation of distance 
in this case 

Partial derivatives of the 
quasar coordinates 

Table 4: Output of the geometric distance function common to all objects that can be observed by 
GINS 

 

6.1.2. Partial derivatives of the station coordinates 

 
For measurements taken by instruments bound to the rotating central body, the reference change matrix M(t) 
appears in the expression of the geometric distance by writing 𝑑!"#$ =    𝑃!"#$%%&#$ −𝑀   𝑡 𝑝!"#"$%& , where 
p!"#"$%& is expressed in the frame relating to the body. 
 
If requested, (see common block of the Director), the program calculates the derivatives of the geometric 
distance in relation to the Xi coordinates of the stations for each measurement according to: 
 

𝜕𝑑!"#$
𝜕𝑋!

   𝑡 = −𝑢.𝑀 𝑡
𝜕𝑝!"#"$%&
𝜕𝑋!

 

 
where 𝑢 is the normed vector tangent to the line of sight. 
 
The partial derivatives of the station coordinates can be expressed either as Cartesian coordinates (XYZ) or 
ellipsoidal coordinates (ϕ, λ, h). 
 

6.1.3. Partial derivatives of the rotation parameters of the body 

 
When one of the objects is a station linked to the central body, the partial derivative of the geometric 
distance for each rotation parameter is calculated according to: 
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𝜕𝑑!"#$
𝜕𝑋!

   𝑡 = −𝑢.
𝜕𝑀
𝜕𝑋!

𝑀!! 𝑡 𝑝!"#"$%&  (𝑡) 

 
The list of Xi orientation parameters depends on the body in question and the form of the orientation matrix. 
Usually, for the Earth, these are the coordinates of the pole xp and yp, UT1 and the coordinates of the celestial 
pole, dX and dY. 
 

6.2. Specifics of the types of measurement 
 

6.2.1. Notion of pass 

 
As a general rule, the term pass is used to refer to all the measurements between a ground instrument and a 
satellite that are made between the moments when the satellite rises and sets, as seen from the station. In this 
case, the term visibility pass is used. Clearly, the length of the pass depends on the orbital parameters of the 
satellite and the position of the station. It can range from just a few minutes to several hours. A number of 
parameters are sometimes defined (usually measurement biases) for the duration of these passes, in which 
case they are considered as constant for this duration. The notion of pass is different in the case of GNSS 
observable objects, since it refers to all the measurements with the same ambiguity (see 5.2 Specifics of the 
types of measurement).  
 

6.2.2. Laser telemetry measurements 

 
The laser telemetry measurement is the measurement of the time-of-flight of a laser pulse transmitted by a 
ground station and reflected on a retroreflector on an artificial satellite or the Moon. Laser stations are fitted 
with precision clocks that are used to date the instants of transmission and reception of the transmitted laser 
pulses. The pulses are powerful (in order to obtain a meaningful reflected signal) and their wavelength varies 
between technologies. 
 
Theoretical quantity 
 
The theoretical quantity associated with laser measurements is expressed in terms of the distance (in metres) 
between the point of emission and the point of reflection and is linked to the outward τ! and return τ! 
travel times, according to: 
 

𝑄!!!"   𝑡 + 𝐵!"#"#$%& = 𝑐  
𝜏! + 𝜏!
2

+ 𝐵!"#$%&'( 
 
The date of the measurement t is the mean date between the date of emission and the date of reception of the 
laser pulse by the station. This expression includes corrective terms B that take account of the calibration 
bias (range and time bias) associated with the instruments. The software can adjust range and/or time bias 
terms (by pass or by station) according to the options in the Director.  
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Figure 17: Fixed laser station of the Côte 
d’Azur Observatory (Calern plateau, France) 

 
Figure 18: Laser retroreflectors of the Lageos 

satellite 
 

The travel time terms are calculated in a conventional manner and take account of the phase centre 
corrections of the onboard instruments, the emission and reflection dates of the signal and the echo date on 
the retroreflector. As a general rule, the position of the phase centre of the retroreflector in orbit is obtained 
on the basis of the coordinates of the retroreflector in the satellite reference and the attitude matrix on the 
date of the echo. In the special case of spherical satellites that are fully equipped with laser retroreflectors 
(Lageos, Starlette, Stella, etc.), the phase centre is corrected by a distance correction that is independent of 
the orientation of the satellite, which is usually unknown. 
 
The software can be used to make the distinction between the different types of laser station according to the 
transmitted wavelength. This data is entered in the station file using the codes shown in Table 5. These 
wavelengths are used in the calculation of the tropospheric correction of the Marini-Murray (Marini, 1972) 
model.  
 

Laser station code that 
appears in the station 

file 

Wavelength Colour 

Lts 423 nm Purple 
Lyg1 532 nm Yag1 (green) 
Lyg2 539 nm Yag2 

(Green) 
Lrb 694 nm Ruby 
Lir 1064 nm Infra-red 

Table 5: Codes and wavelengths of the different types of laser station known in GINS 
 

6.2.3. Doppler measurements 

Theoretical quantity 
  
Definition of the four events: 
 Emission of the first cycle by the transmitter 
 Emission of the Ne–th cycle by the transmitter  
’ Reception of the first cycle by the transmitter 
’ Reception of the Ne–th cycle by the receiver 



 
 

 

40 

 
The events are dated 𝜏!!, 𝜏!!, in transmitter specific time, 𝜏!!, 𝜏!! in receiver specific time and t1, t1, t2, t2 in 
coordinated time in the reference (S). 
In the interval ∆𝜏! = 𝜏!! − 𝜏!!, the receiver received the Ne cycles sent by the transmitter, where 𝑁! = 𝑓!∆𝜏!, 
, fe is the natural frequency of the transmitter. The receiver also has an oscillator and, in the same interval 
∆𝜏!, it also generated a number 𝑁! = 𝑓!∆𝜏! of cycles, 𝑓! being the natural frequency of the receiver. The 
Doppler measurement is represented by the difference between the number of cycles Ne and Nr generated at 
the receiver: 
 

reDOP NNN −=  => rreeDOP ffN ττ Δ−Δ=  
 
If we express ∆𝜏! in  ∆𝜏!, using coordinated time: 
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and neglecting the terms that produce an effect inferior to 7.10-5cycles1, the expression of NDOF (GM is 
noted µ) becomes: 
 

                                                        

1  The value of 7.10-5 cycles corresponds, once converted into speed by the conversion factor !
!!∆!

  

where fe ≈2.109 Hz and Δt ≈ 10 s  to a relative transmitter-receiver speed of 10-6m/s.	
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Therefore, the theoretical Doppler count can be written as the sum of four terms, to which the corrections of 
tropospheric and ionospheric propagation must be added: 
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These equations are valid in upgoing and downgoing Doppler. This theoretical formulation is then used to 
constitute the quantity ∆𝑄 = 𝑁!"#   −   𝑁!"#  and to calculate the corrections of the parameters to be 
determined. 
 
Important remarks: 
∆𝜏! is a receiver proper time interval. ρ2 and ρ1 are distances calculated on the basis of the coordinated times 
( )'22 ,tt  and ( )'11,tt . This has three consequences: 
 
It is essential to know the time scale used to date the measurements and how the scale was converted. 
If the observation equation is to be rewritten to express it in terms of relative transmitter-receiver speed in 
the reference (S), or if the available time interval is a IAT2 time interval ( TAItΔ  instead of rτΔ ), then the 

relativistic corrections must be applied to rτΔ  in the equation : 
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UGEO being the gravitational potential of the geoid. 
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(in ∆𝑁!"#!, this correction of rτΔ  will introduce totally negligible effects of the second order). 
Regarding the calculation of ρ : ρ is calculated on the basis of the position of the transmitter at the instant αt  

and of the receiver at the instant 'αt . Usually, the known quantity is the coordinated time of reception 'αt  

                                                        

2 IAT (International Atomic Time) is the former TT time. It can be considered as the realization, at the geoid 
level, of the coordinated time t of the reference (S). Therefore, it differs from t at a constant rate: 

10
2 10969290130.6 −==
c
UL GEO

G  (see IERS 2000 Conventions, Chapters 1 and 10).	
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(calculated from 
'α

τ r  in the process to re-date the measurements made on the ground). To accurately calculate 

αt  (and therefore the position of the transmitter at this instant αt ), an aberration correction must be applied, 
i.e. the transmitter-receiver distance must be calculated in an approximate manner: ρapp by assessing the 
position of the transmitter at the instant 'αt , then determining αt  by applying the correction: 

c
tt appρ
αα −= ' . 

In the equations (4) the weakest corrective terms are 
TRELNΔ  and the term in ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−− 2

2

2 2c
V

cR
e

e

µ  in DOPNΔ . 

Their maximum values are respectively 8. and 4. 10-4 cycles, i.e. 11. and 6. 10-6 m/s. They can therefore be 
neglected, depending on the required precision. 
 
Free parameters 
 
The free parameters specific to Doppler measurements are a frequency bias and, possibly, a drift in the 
frequency by station. These parameters are constant for the duration of the entire arc or by pass. 
 
References: 
 
Test on relativistic corrections applied to the LASSO experiment - Richard Biancale.  
Relativistic correction to satellite Doppler Observation – Claude Boucher 
Relativity and cosmology – Robertson & Noonan. 
IERS Convention 2000: http://maia.usno.navy.mil/conv2000.html 
 

6.2.4. VLBI measurements 

 
Very Long Base Interferometry (VLBI) measurements are the measurement of the difference in reception 
time of radio radiation from an extra-galactic source (quasar) between two terrestrial radio telescopes. The S 
(2.3 GHz) and X (8.4 GHz) frequency bands used in astrometry and geodesy correspond respectively to 
wavelengths of 13 cm and 3.6 cm. The diameter of the antenna ranges from 9 to 60 metres (see Figure 19). 
 

 
Figure 19: The radio telescope antenna in Fairbanks, Alaska. Diameter: 26 m 

 
The measurement is obtained by correlating the signals recorded on each site and dated by a local clock. For 
each observed object, this correlation gives the delay and the drift 𝜏, 𝜏  between the times of arrival on the 
two sites on the date of the measurement.  
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Figure 20: VLBI measurements (Source: NASA/GSFC) 

 
Theoretical quantity  
 
If there is no perturbation (atmospheric, gravitational), the difference between the arrival times of the signals 
at the two antennas is made up of the geometric delay, which is written: 
 

𝜏!"#$ =
𝑘. 𝑏
𝑐

 
where, 
 
𝑘 = −   cos 𝑑 cos𝛼, cos 𝑑   sin 𝛼, sin 𝑑 , a unit vector in the direction of the radiosource with a right 
ascension α and declination d (in the barycentric frame). These coordinates are entered in the file of quasar 
sources.  
𝑏 = 𝑝!"#"$%&! −   𝑝!"#"$%&! base vector between the two stations (see Figure 20). 
 
The precise theoretical quantity of this measurement is calculated by adding the corrections related to the 
various observed sources, the corrections due to the deflection of the signals by the gravitating masses in the 
solar system, the various delays caused when crossing the atmosphere and instrumental delays 
(synchronization faults of the clocks, antenna corrections) to the geometric delay τ!. 
 
The total theoretical quantity is therefore calculated according to the sum: 
 

𝑄!!!" 𝑡 = 𝜏!"#$%& + 𝜏!"#$%&' + 𝜏!"#$ + 𝜏!"#$# + 𝜏!"#" + 𝜏!"#$%&'("$# 
 
τ!"#$ is calculated in the barycentric frame by successively applying the transformation between the 
terrestrial reference and the geocentric reference, then Lorentz's transformation (see section 2.2) between the 
celestial frame and the barycentric frame to the base line vector B. The relativistic delays (τ!"#$%&') due to 
the curve of path are calculated in this frame by adding up the contributions on all of the bodies in question 
(Sun, Moon and Earth), which are obtained by the expression (Petit and Luzum, 2010): 
 

𝜏!"#$%&',!"#$ = 1 + 𝛾
𝐺𝑀!"#$

𝑐!
  𝑙𝑛  

𝑅!,!"#$ +   𝑅!,!"#$ . 𝑘

𝑅!,!"#$ +   𝑅!,!"#$ . 𝑘
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where,  
𝑅!,!"#$ : the vector between the centre of mass of the body in question and the station n  
𝐺𝑀!"#$: product of the constant of gravitation by the mass of the body  
𝛾 = !

!! !!"#$!
!

 : Lorentz factor 

 
The resulting geometric delay is restored to the celestial frame according to the reverse Lorentz 
transformation. 
 
The instrumental corrections include the geometric corrections of the antennas (which depend on the type of 
assembly used) and the clock corrections. 
 
The geometric corrections are applied according to the code of each radio telescope in the station file. The 
different types of assemblies known in GINS are listed in Table 6. The corrections linked to the thermal 
deformation of the assemblies (Nothnagel, 2009) are not applied for the time being.  
 

Type of radio telescope 
mounting 

Code in the 
station file 

Formula / reference 

Azimuth Vaze No correction applied 
Equatorial Vequ ? 
Richmond Veqr ? 
XY North horizontal Vx-y / Vxyn ? 
XY East horizontal Vxye ? 
Other V ??? No correction applied 

Table 6: The different types of radio telescope assemblies known in GINS 

 
 

Figure 21: Example of a polar mounting (credits: Elena Skurikhina) 
 
Ionospheric corrections are obtained either by the iono-free combination on two observed frequencies, or on 
the basis of models. 
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The tropospheric corrections along the line of sight are calculated by making the difference between the 
contributions of the two stations. The observed zenith bias can be freed for both stations. 
 
Free parameters 
 
The clock parameters and derivatives. 
 
In addition to the Earth orientation parameters (EOP), the coordinates of the radio sources (right ascension 
and declination) can also be freed. 
 

6.2.5. Optical measurements 

 
Optical measurements consist of two angular parameters: the right ascension (α) and the declination (δ) of 
satellites observed by camera (mostly Baker-Nunn). The observations made in the 1960s and 1970s were 
generally reduced in relation to the FK4/FK5 catalogues in the γ50 system. The theoretical quantity is 
simply calculated in the J2000 inertial system. The right ascension is calculated by: 
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The declination measurement is corrected by an old Veis refraction model. 
 

6.2.6. Altimetric measurements 

 
The altimetric measurement is the measurement of the pseudo-distance (based on the travel time) between 
the phase centre of an onboard altimeter that transmits a radar signal and the point of reflection of this signal 
on the ocean surface (see Figure 22). 

𝑄!!!"!"# 𝑡 = 𝑐
𝜏
2

 
 

Theoretical quantity  
The travel time is conventionally modeled by replacing the coordinate of the station by the point of reflection 
of the signal on the ocean surface in the calculation of the geometric travel time. ltimetric measurements are 
radial measurements that are used to define the ellipsoid coordinates (ϕ,λ) of this point of reflection as the 
intersection between the position vector of the satellite and the ocean surface (at the nadir of the satellite). 
The majority of the reflection from the satellite is made on a surface area measuring a few kilometres in 
diameter, and these coordinates can be obtained on the basis of an approximate position of the satellite. The 
measurements are affected by the various delays that occur when passing through the atmosphere. These 
delays are usually corrected when creating the measurement file for GINS using, on the one hand, the 
combination of the bi-frequency altimetric measurements (for the ionospheric delay) and, on the other hand, 
the simultaneous measurements from an onboard radiometer that provides access to the steam content along 
the line of sight (for the tropospheric correction). 
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Figure 22: Illustration of the altimetric range measurement (according to www.aviso.oceanobs.com) 

 
The height of the ocean surface on the date of the measurement is obtained by adding up the variations in the 
height of the surface above the ellipsoid (with a given semi major axis and oblateness) according to: 
 

ℎ!"#$ 𝑡 = ℎ!"#$% 𝜑, 𝜆 +   ℎ!"#" 𝑡,𝜑, 𝜆 +   ℎ!"#$%  !"#! 𝑡,𝜑, 𝜆 +   ℎ!"#.!"#$    𝑡,𝜑, 𝜆  
ℎ!"#  !"#$ 𝑡,𝜑, 𝜆 + ℎ!"#$    𝑡,𝜑, 𝜆 + ℎ!"#$ 𝑡,𝜑, 𝜆   

 
where,  
h!"#$% φ,λ : the height of the geoid 
ℎ!"#" 𝑡,𝜑, 𝜆 : dynamic topography 
ℎ!"#$%  !"#$ 𝑡,𝜑, 𝜆 +   ℎ!"#.!"#$    𝑡,𝜑, 𝜆   ℎ!"#  !"#$ 𝑡,𝜑, 𝜆 : the respective contributions of the Earth, oceanic 
and atmospheric tides  
h!"#$   t,φ, λ : the displacement of the ocean floor by the ocean tide 
ℎ!"#$(𝑡,𝜑, 𝜆): atmospheric pressure and inverse barometer 
 
For more details on the modeling of the altimetric measurements, refer to (Chelton, 2001).  
 
Note: the sum total of the geoid height and the mean dynamic topography is called the mean sea surface or 
MSS. This is defined for a given period. 
 
These model-based corrections are either integrated directly in the altimetric measurements file or can be 
recalculated, in certain cases, in GINS. Table 7 gives the list of possibilities offered by the software 
according to the various corrections. 
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Correction Can be calculated in GINS, if 

requested 
(see description of the 

Director) 

Present in the measurement 
file 

Geoid and dynamic 
topography 

Yes (on the basis of harmonic 
models or MSS matrices 

provided in the header of the 
Director) 

Yes 

Ocean tide Yes (on the basis of the tide 
model provided in the header of 

the Director) 

Yes 

Earth tide Yes (permanent tides can be 
included) 

Yes 

Atmospheric tide No Yes 
Load effect No Yes 
Reverse barometer effect Yes No 

Table 7: Altimetric corrections for the calculation of the height of the ocean surface 
 
Free parameters 
 
Like for any satellite, it is possible to calculate the partial derivatives of the dynamic parameters of an 
altimetric satellite.  
 
It is also possible to ask for the partial derivatives of the geoid to be calculated through the contribution of 
h!"#$% φ,λ  to the measurement.  
 

6.2.7. Measurement of the crosspoint 

 
A crossover measurement is the difference between two altimetric measurements at two different times, one 
of which is made along the ascending track and the other along the descending track.  
Theoretical quantity  
The theoretical quantity is obtained by making the difference of the theoretical quantity of two altimetric 
measurements. In this case, all the corrections are taken from the measurement file and are not recalculated 
in GINS. 
 

𝑄!!!"!"# = 𝑄!!!"!"# 𝑡! − 𝑄!!!"!"# 𝑡! = 𝑐
𝜏 𝑡! − 𝜏(𝑡!)

2
 

 
Free parameters 
 
Like for any satellite, it is possible to calculate the partial derivatives of the dynamic and geometric 
parameters (the phase centre of the altimeter) of the satellite that are simply obtained on the basis of the 
differences in the partial derivatives of the two elementary measurements: 
 

!!!!!"!"#
!!!

=
!!!!!"!"#

!!!
𝑡! − 

!!!!!"!"#
!!!

𝑡!  
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6.2.8. PRARE measurements 

 
The German PRARE system was used on two satellites in the 1990s: METEOR3 in trials and ERS-2. The 
associated distance and Doppler functions are encoded in the software. 
The measurement method of the PRARE instrument consists of two messages sent by the satellite's onboard 
sensor: one signal in the S band at 2.2 GHz and another in the X band at 8.5 GHz. The two signals are 
modulated with a PN code (pseudo-random noise). The time interval separating the reception of the two 
signals, which are sent at the same time, is measured at the ground station (see Figure 23) with very high 
accuracy (< 1 ns). This value is then sent back onboard for the ionospheric correction of the data. Around 20 
ground stations are used to collect the meteorological measurements to correct the tropospheric refraction. 
 

 
Figure 23: PRARE tracking station 

 
The precision of this two-channel system is of the order of the cm in range (in normal points) and 0.1 mm/s 
in Doppler for an integration time of 30 s. 
 

6.2.9. GNSS measurements 

 
GNSS measurements are made on radio signals sent by GNSS satellites to GNSS receivers. The 
measurement is obtained by correlating the signal received with a signal of the same form generated in the 
receiver. The distinction is made between the pseudo-distance measurements, which are obtained by the 
correlation of the code, and the phase measurements, obtained by correlating the phase of the signal carrier. 
A GNSS station is made up of a calibrated antenna linked to a receiver and containing a high-precision 
clock. Modern GNSS receivers can make measurements on different channels. In this way, at each 
measurement step, all the observations made on several frequencies and for different satellites and 
constellations are available. The receivers are synchronized automatically and have the same sampling rate. 
Consequently, the measurements are simultaneous, allowing for the formation of numerous combinations. 
Hybrid processes consist in using observations from different constellations in the same process. 
 
GNSS observations are pre-processed by a set of tools outside the GINS software on the basis of raw 
observations supplied in RINEX format. They can be used in GINS in a number of ways: 
 

− Zero-difference or double-difference measurements 

− Known or estimated ephemeris (orbits/clocks) 

− Fixed, or mobile ground receivers 

− Receivers, which may be onboard LEO satellites (Low Earth Orbiter) 



 
 

 

49 

For example, GINS can be used for the following applications: 
 

• PPP mode: single-receiver processing of non-differentiated measurements: the clocks and 
the orbits of the GNSS satellites are fixed and are specified in the GINS Director. The 
software restitutes the clock parameters, the ambiguities, the positions (static or high-
frequency) and the tropospheric parameters associated with the receiver. 

• Double-differences: processing of the double-difference data of a network of stations. The 
software restitutes the positions, the differences in ambiguity and the tropospheric 
parameters associated with the receivers.  
 

• LEO orbit restitution: the clocks and the orbits of the GNSS satellites are fixed and are 
specified in the GINS Director. The software restitutes the low orbit of one or two LEO 
satellites and the associated clock parameters and ambiguities. 
 

• Restitution of GNSS orbits and the network coordinates: GINS processes the data from a 
global network of receivers and restitutes the orbits and the clocks of the GNSS satellites, 
the orientation parameters of the Earth, plus the coordinates of the stations, ambiguities, the 
clock parameters and the tropospheric parameters associated with the receivers.  

The calculation of the elementary quantity is the same, according to the mode in question. The clock 
corrections are freed or applied, depending on the case. 
 
Theoretical quantity  
 
The non-differentiated elementary observation equations between a GNSS receiver and transmitter are 
modeled by the following equations (Laurichesse et al., 2009) for the phase (L) and pseudo-distance (P) 
observables on the two frequencies (a and b):  
 
𝑃! = 𝐷! + 𝑒 + ∆ℎ! + ∆𝜏! 
 
𝑃! =   𝐷! + 𝛾! + ∆ℎ! + 𝛾∆𝜏! 
 
𝜆!𝐿! = 𝐷!! + 𝜆!𝑑!"#$%& − 𝑒 +Δℎ! + Δ𝜏! − 𝜆!𝑁! 
 
𝜆!𝐿! = 𝐷!! + 𝜆!𝑑!"#$%& − 𝛾𝑒 +Δℎ! + 𝛾Δ𝜏! − 𝜆!𝑁! 
 
The travel time Da, Db, 𝐷!!  and 𝐷!!  of the various observations includes the geometric term and the 
tropospheric delay. The geometric term contains the antenna corrections that are usually different for the 
phase measurements and the pseudo-distance measurements, as well as for the frequency in question. The 
antenna and wind-up phase d!"#$%& corrections are described in detail in section 5.5. GINS is currently 
limited to the signals and the frequencies in Table 8. The ∆ℎ!, Δℎ!terms are the clock differences between 
the receiver and the transmitter. These terms include possible bias between the different types of observables 
and the inter-system bias. The clock terms are eliminated when double differences are formed between the 
observations. The terms of ionospheric delay, which are written in the first order as a function of 𝛾 = !!

!

!!!
, and 

of the delay e on the first frequency (a), are eliminated by forming iono-free combinations in the input into 
GINS. This combination also makes the possible Δ𝜏!,Δ𝜏!  bias unobservable.  
 

 L1 L2 L5b L5a 
GPS 1,575.42 MHz 1,227.60 MHz - 1,176.45 MHz 
GLONASS (index k, 
between -7 and +6 
depending on the 
satellite) 

(1602 + 
k *0.5625 MHz) 

(1246 + 
k *0.4375 MHz) 

- - 

Galileo 1,575.42 MHz  1,207.14 MHz 1,176.45 MHz 
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Table 8: Known GNSS satellite frequencies in GINS 
 
The GNSS observations processed in GINS are the non-differentiated, iono-free observables (Loyer, 2012) 
that are obtained on the basis of elementary non-differentiated observations according to: 
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The iono-free, double-difference observations between two receivers (i, j) and two transmitters (k, l) are 
obtained on the basis of the iono-free, non-differentiated observables according to: 
 

[ ] [ ]ljI
k
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l
iI

k
iII

kl
ij PPPPP )))) −−−=Δ  Measurement of pseudo-

distance 
[ ] [ ]ljI

k
jI

l
iI

k
iII

kl
ij LLLLL )))) −−−=Δ  Phase measurement 

 
The geometric distance between the transmitter antenna (onboard a GNSS satellite) and the receiver antenna 
is calculated in the same way as all the distance measurements (see section 5.1). 
 
Free parameters 
 
The free parameters that are specific to GNSS measurements are the receiver clock (MNS) and transmitter 
clock (MNG) parameters, the GPS (MNA), GLONASS (MNR) and Galileo (MNE) ambiguity parameters, 
and the inter-system bias in the case of hybrid processes (MBI). They are named according to the date, the 
satellite and the constellation, as shown in Table 9. The partial derivatives of these parameters are equal to 1, 
except for the satellite clocks, for which -1 is conventionally applied. 
 

Constellation Rinex 
code 

GINS number 
of the 

satellites 

Code of the 
phase 

ambiguity 
unknown 

Short code 
(clocks) 

3-letter 
code 

GPS G 666nn 
(777/888/999) MNA GPnn GPS 

Glonass R 500nn MNR GLnn GLO 

Galileo E 400nn MNE GAnn GAL 

Table 9: codes uses for GNSS observables and unknowns 
 
GNSS data pre-processing program: PRAIRIE 
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The PRAIRIE data pre-processing software prepares the GNSS data for the GINS software. PRAIRIE 
processes the data from one or more files (of any sample rate) from the same receiver in Rinex2 or Rinex3 
format and performs the steps described in Table 10.  
 

 Step Conditions/Details 
1. Reading and selecting the observations.  

Elimination of observations that are unusable at 
this point (e.g., single-frequency or no code) 

Default: GPS observations 
Option: GLONASS observations, which 
require the GLONASS frequency history 
file to be present (historik_glonass) 
Option: Galileo (and/or Giove) 
observations 

2. Correction of millisecond discrepancies between 
the code and phase measurements 

If any such discrepancies are detected 

3. Breakdown of the observations into passages of 
constant ambiguity. The passages and the 
ambiguities are named in this step. 

The thresholds applied at this point can 
be modified in the options file. 

4. Sets the WL ambiguities (GPS only) Requires the MuSatRef.res.dat containing 
the Wide-Lane Satellite Biases (WSB 
file) to be present. 

5. Elimination of observations that are unusable at 
this point (extremities of the passes, overly noisy 
measurements or passs). 

The thresholds applied at this point can 
be modified in the options file. 

6. Conversion to GINS input format. Only the observations that have not been 
eliminated are copied. 
The name of the output file is always 
"sortie_PDGR90". 

Table 10: Key steps in the PRAIRIE GNSS data pre-processing software 
 
The useful parameters can be defined in an options file. The output files of the various receivers can be 
concatenated to produce a multi-receiver file for the GINS software or for the "double90" program that forms 
the double-differences, which is described below. 
 
GNSS double-difference formation program: double90  
 
The program uses the files produced by concatenating several files from PRAIRIE. The operations to form 
double-difference measurement files are performed on three-dimensional logic tables (stations x satellites x 
epochs) that encode the presence or the absence of a non-differentiated measurement. 
 
The double-differences are formed by using these tables, without really forming the observables. The 
differences are made when writing the data at the end of the program. The first step consists of counting all 
the double-difference measurements that can be formed on the basis of the non-differentiated data of the n 
stations present in the input file for each of the possible baselines. The baselines are sorted in increasing 
order of potential measurements. The following algorithm is then applied to select the bases that will be 
formed: 
 

• the first and second base in the list are retained. 
• if these two bases share a common station, an identical family number is assigned to them. 

Otherwise, two different numbers are assigned. 
• for each base, a test is run to see whether the two stations belong to families that are already linked 

and the bases selected according to the various cases are formed: the two stations belong to the 
same family: no base is formed. One of the two stations belongs to a family, but not the other one, 
or neither of them belong to a family: the base is kept and the two stations receive the number of 
the corresponding family. The stations belong to two different families: the base is kept and all the 
stations in the two families receive a common family number (the families are linked by the new 
baseline). 
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• proceed to the next base, and so on to the end of the list.  

In this way, a total of (n-1) baselines are created out of the possible n (n -1) /2. This algorithm is partially 
inspired by the Bernese software manual (version 4.2, chapter 10). The above process guarantees that all the 
stations belong to at least one of the baselines that are retained. Moreover, all the stations are linked to the 
same network (see Figure 24). Once the station bases have been chosen, the couples of satellites to be 
formed are identified in each baseline. The algorithm used to select the couples is similar to the station 
algorithm described above. The couples of satellites that form the most double-differences are sorted, then 
the couples (nsat -1) of independent satellites are added to the set of double-differences to be formed. 
 

 
 

Figure 24: Example of a network formed by the double90 program. At this point, the formation 
algorithm prevents the formation of double-differences between stations E and F, which would result 
in double-differences that are not independent and would make the system of the normal equations of 
the measurements singular. 
 
After these two steps, the logic tables are used to identify the non-differentiated measurements that have not 
yet been used. Since the verification of the non-redundancy of the measurements is costly, the measurements 
of one station are simply re-introduced to the set of unused non-differentiated measurements. The 
measurement that forms the most duplicates with the remaining measurements is added. The first two steps 
are then repeated on the remaining set. The output file contains the double-differences that can be used by 
GINS.  
 

6.2.10. GRACE measurements 

 
Inter-satellite GRACE measurements (Gravity Recovery And Climate Experiment) correspond to the 
projection onto the chord of the difference in the coordinates of the two GRACE-A and GRACE-B satellites 
that co-orbit at an altitude of less than 500 km and at a distance of between 170 and 270 km. This 
measurement, which is made using two bi-directional carriers in frequency bands K (24 GHz) and Ka (32 
GHz), is referred to as KBR (K-Band Ranging) and produces a biased distance measurement that must be 
corrected due to the effects of differential propagation time (of the mm), antenna alignment (of 10 μm) and 
ionospheric delay (of the mm), which are supplied in the measurement files. 
 
If (xA, yA, zA) represents the coordinates of satellite A and (xB, yB, zB) represents the coordinates of satellite B, 
then the distance equation is written as follows: 
 

))zz()yy()xx(( 2
AB

2
AB

2
AB −+−+−=ρ  

 
The measurement files also contain the most widely used derived KBRR (K-Band Range-Rate) 
measurements: 
 

ρρρρ /))((/))((/))(( ABABABABABAB zzzzyyyyxxxx −−+−−+−−=   
 

and the KBA (K-Band Acceleration): 
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ρρρρρ //))((/)( 23

1

23

1
 −−−∑+−∑= ABABAB xxxxxx

 
 
The derivatives of the propagation time and antenna alignment corrections must also be applied to the latter 
two functions. 
These various measurement functions can be used together. Bias by period, or even linear or quadratic 
corrections, can also be applied to them, as well as corrections to the orbital period and to sub-multiples 
down to one quarter of this period. 
 

6.2.11. Gradiometric measurements (GOCE) 

 
A gradiometer is an instrument made up of two or 
more accelerometers that are symmetrically 
distributed around the centre of mass of the 
satellite (see Figure 25). The sum total of the 
measured accelerations provides access to the 
common mode (surface accelerations), while their 
differences provide access to the components of 
the volume forces gradient.  
The difference between the accelerations is 
written in the non-inertial reference frame linked 
to the satellite according to: 

𝑚 = ∇!𝑈 − Ω +Ω! . 𝐿 
where ∇!𝑈  is the Laplacian of the gravity 
potential (at the centre of the accelerometers), 
𝐿 = 𝐴!𝐴!  is the vector between the two 
accelerometers in question and Ω  et  Ω!  are the 
matrices associated with the components of the 
rotation vector of the satellite 𝜔!,𝜔!,𝜔! , 
produced by: 
 
 
 
 

Ω =
0 ω! −𝜔!

−𝜔! 0 ω!
ω! −ω! 0

 and Ω! =
−𝜔!! − 𝜔!! 𝜔!𝜔! 𝜔!𝜔!
𝜔!𝜔! −𝜔!! − 𝜔!! 𝜔!𝜔!
𝜔!𝜔! 𝜔!𝜔! −𝜔!! − 𝜔!!

 

 
These observations are used in conjunction with the attitude data to restrict the corrections to the components 
of the tensor of total gravity ∇!𝑈  (𝑡). 
 
The a priori gravity tensor is modeled on the basis of all the gravitational models described in section 3.2 
(gravity field of the Earth and parts that are variable over time). 
 
In practice, this tensor and its partial derivatives are calculated on each measurement date by the "Obelix" 
software library. The free parameters are the coefficients of the gravity potential and the calibration 
parameters of the gradiometer. The GINS software can be used to filter the measurements and the variational 
equations, so that only the useful spectral band of the instrument is processed (see Figure 26). 
 

Figure 25: Block diagram of a three-axis gradiometer 
made up of six accelerometers. The distinction is made 
between the references specific to each accelerometer 
(ARF = accelerometer reference frame) and the 
reference of the gradiometer (GRF = gradiometer 
reference frame). 
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Figure 26: Predicted spectral density for onboard accelerometers in the GOCE mission 
 

6.2.12. DSN measurements 

 
There are three types of DSN measurement: two-way Doppler, one-way Doppler and range. 
 
2/3-way Doppler measurements 
 
The signal is transmitted by an Earth station at a frequency fT (usually in the S or X band) during an interval 
[t1,s,t1,e]. This frequency can be controlled and, therefore, can vary in a linear manner in each time interval, in 
order to optimize the reception of the final signal on Earth. The signal sent by the station is received onboard 
the satellite by a transponder that re-transmits the signal for an interval [t2,s,t2,e] after multiplying it by a 
frequency factor M2. The signal is then received by a station on Earth during an interval [t3,s,t3,e], also known 
as the counting time Tc. If the transmitter and receiver stations are different, the measurement is a 3-way 
measurement. The frequency received is compared with a reference frequency fT, which is itself multiplied 
by the frequency factor M2R. Therefore, the measured quantity is expressed as follows: 
 

 
 

𝑞!"# = 𝐹 𝑡! 𝑑𝑡! − 𝐹 𝑡! 𝑑𝑡!
!!(!")!

!!

!!(!")!

!!
,𝑚𝑜𝑑𝑢𝑙𝑜  𝑀 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
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where corrections are all the propagation corrections in the Earth's atmosphere and in the interplanetary 
environnement (plasma). The propagation corrections in the solar corona are added to these corrections if the 
electromagnetic signal passes close to the Sun. 
 
1-way Doppler measurements 
 
In this case, the satellite transmits a frequency (fT0), which may drift over time with a linear part (fT1) and a 
quadratic part (fT2). 
 

 
 

𝑞!"# = 𝐶!𝑓!!
𝜌!! − 𝜌!!

𝑇!
− 𝐶! Δ𝑓!! + 𝑓!! 𝑡!! − 𝑡! + 𝑓!! 𝑡!! − 𝑡!

! +
1
12

𝑇!′
! 𝑇!′

𝑇!
  

+ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
 

With 𝑡!! =
!!! !!!!

!
 and t0 the reference time of the onboard frequency. 

 
Range measurement 
 
This is the difference between the phase of the transmitted ranging code and the phase of the received 
ranging code. 
 

𝑞!"# = 𝐹 𝑡! 𝑑𝑡! − 𝐹 𝑡! 𝑑𝑡!
!!(!")!

!!

!!(!")!

!!
,𝑚𝑜𝑑𝑢𝑙𝑜  𝑀 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

 
where ST is the station time, and TA and TB are the phase references of the station upon emission and 
reception. F is the conversion factor of seconds into units of distance, and M is the length of the ranging 
code. 
 

6.3. Troposphere models 
 
The travel time (section 5.1) is linked to the geometric distance by the speed c of propagation of the optical 
or radioelectric signals in a vacuum. In practice, the precise modeling of the signal's travel time must 
incorporate the propagation through the atmosphere, which is not a vacuum and whose refraction index 
depends on the temperature, pressure and water vapour content. These effects are variable in space and over 
time according to altitude and meteorological phenomena (Marini 1972, Niells, 1996). 
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On the Earth, the precise modeling of travel time through the lowest layers of the atmosphere is generally 
carried out for an altitude up to 80 km. The models include the delay due to the drop in the speed of 
propagation (relative to the speed of light) and the effects due to the curve in the optical path caused by the 
heterogeneous nature of the medium. These two effects result in an apparent increase in the travel time 
relative to the straight line in a vacuum, known as the tropospheric delay. The models used in GINS break 
down the total tropospheric delay (STD) by allocating a geodetic measurement seen from an angle of 
elevation el and an azimuth az into a sum of two or three terms, which is the general form proposed in the 
IERS 2010 conventions (Petit and Luzum, 2010). 
 
Two-term model: 
 

( ) ( )
( ) ( )( ) GEN

T

mfAzGazG
elmfZTDazelSTD

.sin.cos.
.,

++

=

 
 
Three-term model: 
 

( ) ( )
( )

( ) ( )( ) GEN

W

H

mfAzGazG
elmfZWD
elmfZHDazelSTD

.sin.cos.
.
.,

++

+

=
 

where:  
ZHD: zenith hydrostatic delay 
ZWD: zenith wet delay 
ZTD: zenith total delay 
mfH: hydrostatic projection function 
mfW: wet projection function 
mfT: total projection function 
GN: North component of the tropospheric gradient 
GE: East component of the total tropospheric gradient 
mfG: projection function of the total tropospheric gradient 
 
A projection function is associated with each type of zenith delay (hydrostatic and wet). Each projection 
function model produces a couple of functions for the two zenith components. Models that do not separate 
the hydrostatic and wet contributions of the zenith delay, modeling the total zenith delay instead, must 
clearly be associated with a total projection function. 
 
The term associated with the tropospheric gradients also has a specific projection function. It is totally 
independent of the projection function models associated with the zenith delays. Consequently, the modeling 
of a tropospheric gradient can be associated with any type of zenith delay model. 
 
As a general rule, the hydrostatic contribution is deterministic in the calculation and is corrected in the 
observations a priori. Only the wet contribution ZWD is estimated at the same time as the other geodetic 
parameters. The corresponding partial derivative is mfW. In modeling processes that do not make the 
distinction between the hydrostatic and wet components, the partial derivative is naturally mfT. In three-term 
models, the absence of ZWD, calculated a priori by the model (e.g. GPT (Boehm, 2007)), imposes the use of 
an a priori ZWD that is zero. 
 
The projection function associated with the tropospheric gradients is also deterministic. Only the GN and GE 
components of the gradients are estimated. Their a priori value is zero. 
 
Depending on the geodetic technique, the parameters ZWD, GN and GE, are not estimated with the same 
density. For example, it is customary for GNSS measurements to estimate one ZWD per station every 2 hours 
and one gradient per day. For DORIS, one ZWD is estimated each time a satellite passes over a station (~20 
min). 
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6.4. Ionospheric corrections 
 
The ionosphere is a dispersive medium that is ionized by solar radiation. The electronic content depends on 
the received solar flux, the time of day, the place in question, the period of the year and the solar cycles. An 
example of a global TEC (Total Electron Content) map is shown in Figure 27. The electromagnetic signals 
are affected when crossing this medium by an advance in the phase of the carrier and a delay that depends on 
the frequency for the code measurements (range). 
 
This effect, which can reach tens of metres in terms of distance for GNSS signals (and up to about 100 
metres for periods of intense solar activity), must be corrected in order to make proper use of the geodetic 
measurements. 
 
 provides an illustration of examples of ionospheric bias observed on GPS code and phase measurements. 
 

 
Figure 27: Example of a global map of the ionosphere calculated on the basis of GPS observations of 
the Astronomisches Institut Universität Bern (AIUB), source 
http://www.cx.unibe.ch/aiub/ionosphere.html 
 
Multi-frequency measurements (GNSS, DORIS, Altimetric, VLBI) can be used to correct the ionospheric 
propagation errors of the first order (bi-frequency) or of the second order (tri-frequency). The iono-free 
combination between two distance measurements Ma and Mb (on frequencies a and b) is written as follows: 

𝑀 = 𝑀! −   𝑀!   
1
𝑓!!

−   
1
𝑓!!

!!

 

Effects of the second order, which are not corrected in bi-frequency, are of the order of a few centimetres for 
the L band of GNSS signals (Petrie et al., 2010). 
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Figure 28: Example of ionospheric correction observed by GPS measurements of code and phase 
(inverted correction) for four passages over the POTS GPS station (April 8, 2004). The values from the 
IRI2001 model (International Reference Ionosphere 2001) are shown by way of comparison (ref = 
http://nssdc.gsfc.nasa.gov/space/model/ionos/iri.html). The highest noise of the code measurements can 
also be distinguished in relation to the phase, especially at the start and the end of the passage. 
 

6.5. Correction of the phase centre of the instruments on the ground 
 

6.5.1. Antenna correction 

 
The coordinate of a station provided in the station file is the coordinate of the associated geodetic marker. 
But the maker usually differs from the phase centre of the instrument, which is the geometrical point where 
the measurement is physically made. The phase centre depends on the type of instrument and the frequency. 
The integration of data used to calculate the phase centres of ground instruments depends on the type of 
measurement in question. The phase centre and all the coordinate corrections are calculated in the reference 
frame linked to the body.  
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Measurement Details Sources for the correction 
Laser   
Doppler There are two types of DORIS 

antennas (Starec and Alcatel). 
Each is associated with a phase 
centre at 2 GHz and 400 MHz 

Station file (xxxA /dorb = 
Alcatel; xxxB/dloc = Starec). 
The eccentricity in the station 
file gives the 2 GHz phase 
centre. The 400 MHz offset is 
hard coded in GINS. 

GNSS Specific corrections according 
to the azimuth and the elevation 
of the received signal are 
applied in addition to the phase 
centre corrections  
(see below.) 

The model of the GNSS 
antenna used on the site (and its 
history) is entered in the station 
file. Corrections specific to 
each antenna are entered in the 
ANTEX file attached in the 
Director.  

VLBI   
Table 11: Sources of station antenna corrections 

 

6.6. Correction of the phase centre of the onboard instruments 
 

6.6.1. Antenna correction 

 
The antenna corrections relating to onboard antennas (transmitters and receivers) are similar to the 
corrections of ground station antennas. The phase centres of the instruments are entered in the macro-model 
file for all types: DORIS, altimeter, laser, accelerometer, rare and kbr. The phase centre correction of GNSS 
antennas is read in the ANTEX file (as for station antennas).  
 

Measurement Details 
Laser Phase centre entered in the macro-model file 
Doppler Phase centre entered in the macro-model file 
GNSS Corrections specific to each transmitter antenna are entered in the 

ANTEX file attached in the Director. 
GRACE Kbr Phase centre entered in the macro-model file 
DSN Phase centre entered in the macro-model file 
Altimetric Phase centre entered in the macro-model file 

Table 12: sources of onboard antenna corrections 
 

6.6.2. Attitude correction 

 
Like for the calculation of non-gravitational forces, the calculation of the phase centre of onboard 
instruments takes the attitude of the satellite into consideration (see section 3.4). The phase centre corrections 
expressed in the satellite reference frame are converted to the integration reference frame by applying the 
attitude of the satellite on the date when the signal is sent or received.  
  



 
 

 

60 

6.7. GNSS antenna correction 
 
The GNSS antenna file, in ANTEX format, contains the information on the antenna phase corrections based 
on adjustments or calibration measurements made on the ground using robots (Schimdt, 2007). For each 
antenna model, it contains the vectors between the centre of reference of the antenna and the phase centre of 
the measurement for the different useful frequencies, plus the correction maps of the measured quantity 
according to the azimuth and the elevation of the incoming signal. This file is in ANTEX format, which is 
described at igscb.jpl.nasa.gov/igscb/station/general/antex13.txt. If combinations of measurements between 
several frequencies are processed, a phase centre correction is applied that depends on the individual phase 
centres by frequency read in the antenna file. In the case of the iono-free combination between two 
measurements on the frequencies a and b, the phase centre of the combined measurement Δ𝑝!" is obtained 
on the basis of the individual phase centres, according to: 
 

( ) ( ) 2
1

2
2:

1
1,

λ
λ

γ
γ

=
−

Δ−Δ+Δ=Δ wherepppbap baacdp


 
 

In addition to the vectorial correction of the phase centre, scalar corrections are also applied (from the 
antenna correction maps) that depend on the frequency, the type of measurement (code / phase) and the line 
of sight relative to the antenna (azimuth, elevation): 
 

( ).elev.,azimdd antennegeom ΔΔ =  
 

The two above corrections (phase centre and scalar correction) are applied to transmitter antennas (GNSS 
satellites) and receiver antennas. The make of the antenna is included in the station file for receiver antennas, 
and the constellation file for transmitter antennas. 
 
The ANTEX file is entered in the environment block of the GINS Director file.  
 

6.7.1. Wind-up correction 

 
For DORIS and GNSS measurements, a so-called phase wind-up correction is also applied, which depends 
on the relative orientation of the transmitter and receiver antennas (variable in the course of a pass). This 
correction can reach several cm for GNSS measurements. It is calculated according to the formalism 
described in (Kouba, 2009). 
 

6.8. Relative curve correction 
 
The relativistic distance correction relating to the curve of the travel due to the gravitational action of the 
central body is calculated for all the signals propagated in the vicinity of the central body according to (Petit 
& Luzum, 2010, Chapter 11):  

𝑑!"#$% = 2  
𝐺𝑀
𝑐!

𝑙𝑜𝑔
𝑟!!𝑟! + 𝑑!"#$
𝑟!!𝑟! − 𝑑!"#$

 

where r1 and r2 are the norms of the coordinates of the start and end points of the travel. 
 

6.9. Partial derivatives linked to the satellite 
 
The two main families of parameters associated with the satellite are the geometric parameters (coordinates 
of the phase centres of onboard instruments, geometric instrument bias) and the dynamic parameters 
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affecting the force model and, therefore, the position of the satellite over time. The numerical integration 
returns the derivative of the position (and of the speed) in relation to the dynamic parameters Xi. These 
integrated partial derivatives are interpolated on the date of the measurement by the onboard instrument (date 
of emission or reception, depending on the instrument) and linked to the partial derivatives of the 
measurement according to: 
 

𝜕𝑑!"#$
𝜕𝑋!

   𝑡 = −𝑢.
𝜕𝑃!"#
𝜕𝑋! 𝑡

 

 
 
where 𝑢 is the unit vector directed along the line of sight of the measurement. 

7. ADJUSTMENT PROCEDURE 
 

7.1. Observation equation (s) 
 
At each iteration, GINS calculates all the n measurement residuals Ri obtained by deducting the theoretical 
quantity of the measurement Qi from the value of the measurement Mi. A weight (πi) specified in the 
measurement block(s) of the Director is allocated to each measurement. Therefore, the following is written 
for each measurement: 
 

Ri = Mi – Qi (X1, X2,…, Xp)    (πi)           i = l,n 
 

The theoretical quantity is a non-linear function of the parameters Xk (k = 1 à ρ) that are used in the 
calculation. The obtained residuals contain the instrumental noise and the contribution caused by errors 
modeling the theoretical quantity. The model is refined by adjusting all or part of the parameters entering the 
calculation of the theoretical quantity by writing the linearization in the first order of the measurement 
equations according to: 
 

𝑄! 𝑋 +   ∆𝑋 =   𝑄!    𝑋 +   
𝜕𝑄!
𝜕𝑋!

∆𝑋!              𝜋!                           𝑖 = 𝑙, 𝑛
!

 

In this case, variable 𝑋! represents the a priori value (or current value) of the parameter, and variable∆𝑋! 
represents the correction to this value. By considering the set of p parameters 𝑋 =    (𝑋!,𝑋!,… ,𝑋!)        and the 
residuals of the set of the n weighted measurements R =    (R!,R!,… ,R!)    , the matrix system of the linear 
observation equations is built: 
 

𝐴!,!∆𝑋 = 𝑅 + 𝜀              (𝜋!,!) 
 
𝜺 is the residual error between 𝑄! 𝑋 + ∆𝑋  and Mi. 
 
The partial derivatives are calculated with the theoretical quantities in the measurement functions (see 
section 5). Matrix 𝐴!,! is the matrix of partial derivatives (size nxp) and 𝜋!,! is the matrix of the weights of 
the measurements. The latter is purely diagonal in the case of independent measurements, but may contain 
non-diagonal elements in the case of measurements that are correlated with one another (e.g., GNSS double-
differences).  
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7.2. Least square method 
 

7.2.1. General 

 
We look for the parameters correction vector ∆𝑋 which minimizes the residual error 𝜺.  Litterature contains 
several methods to resolve this type of equation system. GINS uses the conventional least square method. 
With this method it can be shown that the amount 𝐴!𝜋  𝜀 equals the null vector. 
Multiplying the observation equations by 𝐴!𝜋 on both sides allows to build the normal equations: 
 

𝐴!𝜋𝐴  ∆𝑋 = 𝐴!𝜋𝑅 
 
In "degraded" cases, in which the system is under-determined (due to a low number of measurements in 
relation to the parameters in question, or if certain parameters are correlated with one another, or in order to 
take account of gaps in the measurements), it may be useful to add a set of equations of ncont equations of 
constraints applying to all or part of the parameters, that takes the following general form: 
 

𝐶!,!∆𝑋 = 0 
 
The matrix of the constraints on the parameters 𝐶!,!, which may not be diagonal, is added to the normal 
equations to form the normal constrained system: 
 

𝐴!𝜋𝐴   + 𝐶 ∆𝑋 = 𝐴!𝜋𝑅 
The term on the right (𝐷 =   𝐴!𝜋𝑅) is called the second member of the normal equation and the matrix N = 
(𝐴!𝜋𝐴   + 𝐶) is called the normal matrix, which is said to be constrained if the matrix C is non-zero. 
 
The a priori variance of the residuals (before resolution) is: 
 

𝜎! =   
𝑅!𝜋  𝑅
𝑛

 

7.2.2. Practical aspects in GINS 

 
Only the residuals, and therefore the second member, are recalculated between two successive iterations. On 
the contrary, the normal matrix, whose calculation is costly, remains unchanged between the iterations. The 
hypothesis is justified in most of the cases encountered. 
 
For certain problems, the number of observations and parameters is such that the calculation times become 
excessive, as does the amount of memory required to store the partial derivatives. This is the reason why 
more efficient methods have been developed to store and calculate the matrix of the observation A and of the 
normal equation N.  
 

7.3. Resolution 
 
The normal (constraint) equations are resolved by inversion according to: 
 

∆𝑋 = 𝐴!𝜋𝐴   + 𝐶 !!𝐴!𝜋𝑅 
 
The residuals and their a posteriori variance are thus obtained: 
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𝑅! =   𝑅 − 𝐴∆𝑋 
 

𝜎′! =   
𝑅′

!
𝜋  𝑅′

𝑛 − 𝑝 + 𝑛!"#$  
 

 
the a posteriori variance can be computed from the a priori variance, D and N through the formula: 
 

𝜎′! =
𝑛.𝜎! −   ∆𝑋! .𝐷
𝑛 − 𝑝 + 𝑛!"#$

   

 
The formal uncertainties are given by the diagonal terms of the variance-covariance matrix: 
 

𝐶!" = 𝜎′! 𝐴!𝜋𝐴   + 𝐶 !! 
 

7.4. Iteration (s) 
 
In the first iteration the software calculates the residuals and the partial derivatives of each of the 
measurements. The parameters are initialized at their a priori value, which depends on the selected model. 
The a priori values of the parameters can be changed by the user. 
 
Certain measurements are excluded according to the selected elimination criteria (minimum elevation, 
minimum number of measurements per pass, residuals above a given threshold). Then the system of normal 
equations is built for the first time and inverted. 
In each iteration, the obtained correction ∆𝑋  is added to the current value 𝑋 , which is taken into 
consideration in the calculation of the theoretical quantities and of the residuals that are recalculated in the 
following iterations. The normal system is not completely recalculated in each iteration (the linearization 
obtained in the first iteration is assumed to be sufficiently correct), but in the course of the iterations, the 
contribution of the eliminated measurements is deducted from the system of normal equations. 
 
The iterations continue until convergence is reached when the variation of the global residuals drops below 
the convergence criterion 𝜀!"#$ according to: 

𝑅!!! !"#$ − 𝑅!!! !"#$!!

𝑅!!! !"#$!! < 𝜀!"#$
 

 
The maximum number of iterations and the convergence criterion are selected by the user. 
 
The final value of the parameters, which is the sum of the a priori values and the successive corrections 
obtained in the iterations, is used for the additional iteration. 
 
If an additional iteration is decided on, the residuals of the retained measurements and the partial derivatives 
are recalculated. The normal system without constraints is rebuilt and output in the "EQNA" file ready for 
use by the programs in the DYNAMO chain. 

8. GINS OUTPUTS 
 
The main output of the GINS software is the listing that contains the screen output of the software. The most 
useful information includes the global or detailed statistics on the measurement residuals, the adjusted values 
of the parameters, the characteristics of the input models and the Director used. In addition to this output, it 
is also possible to ask for specific output in the form of independent files. More details about these outputs 
are included below.  
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8.1. Parameters 
 
The values of the adjusted parameters (a priori, correction, final value, sigmas) are shown in the listing (at 
each iteration step). They can be extracted using the extraction_parametres_sortie_GINS utility. The 
parameters are identified by their 24-character name, or signaletic element (see Figure 29). The parameters 
are grouped into families according to type. 
 
The distinction is made between the dynamic parameters that affect the calculation of the forces acting on 
the satellite(s) are integrated with the movement equation (see Table 13), and the geometric and 
measurement parameters (see Table 14). The adjusted parameters from GINS and the DYNAMO chain or 
any other source can also be used as input for GINS in order to impose the a priori values. There are two 
formats of a priori values: the a priori value format that gives the values and the sigmas of the parameters 
directly, and the constraints format (more general) that is used to specify the equations of linear constraints 
between one or more parameters.  
 

 
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 
G g g  ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 
The first letter "G" shows the group to which the unknown belongs. The letters "g 
g" indicate its name in the group. The fourth character is always left blank. The 
last four characters usually show the name of the satellite. The other "?" characters 
are used to encode details about the parameter, such as the degree and order for 
harmonic coefficients, the date of dated coefficients and the numbers or codes of 
the stations for measurement parameters. 

Figure 29: General principles applying to the 24-character naming signaletic element 
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First letter of 
the signaletic 
element 

Dynamic parameters 

Orbital elements E Position and initial velocity (angular), keplerian or other 
elements. 

Multiplying factors of 
non-gravitational 
accelerations 

F Factor of the atmospheric drag force (FD), of the 
atmospheric lift, solar pressure force factor (FS), albedo, 
thermal thrust. 

Empirical accelerations B Bias and periodical acceleration in the local orbital 
reference frame (RTN) or in the satellite reference frame 
(XYZ). 

Thrust parameters Y Stochastic empirical acceleration parameters, constant per 
segment or at specific dates (manoeuvres, eclipses). 

Accelerometers X Bias, scale factor and eccentricity of the onboard 
accelerometers and their dependancy with temperature or 
temperature drift. 

Optical parameters R Thermo-optical parameters characterizing the different 
surfaces of the satellite. 

Atmosphere A Temperature and density parameters of the components of 
the atmosphere. 

Gravity G Spherical harmonic coefficients of the development of the 
gravity potential (Clm/Slm) and their temporal drift. 

Oceanic O Spherical harmonic coefficients of the development of the 
different tide waves. Inverse barometer response of the 
ocean at various frequencies. 

Table 13: The families of dynamic parameters 
 

 
Family 

First letter of 
the signaletic 
element 

 
Geometric parameters 

Centre of mass C Eccentricity and centre of mass vectors of the 
onboard instruments. 

EOP P Earth rotation parameters. 
Coordinates of the pole (PX/PY) and UT1 (PT). 

Nutation N Nutation parameters (NP/NE or NX/NY). 
Love number L Love numbers associated with the loading 

deformation of the Earth. 
Stations S Coordinates and drift in the coordinates of the 

stations (XYZ or Phi/Lambda/h). 
Dynamic topography T Spherical harmonic coefficients of the dynamic 

topography of the oceans. 
Measurements M Any measurement parameters (bias and 

instrumental drift, clocks, ambiguities, dating bias 
and tropospheric gradients). 

Quasar Q Coordinates (right ascension and declination) of 
extragalactic radio sources. 

Table 14: The families of geometric parameters 
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8.2. Ephemerids 
 
The ephemerid file contains the tabulated orbits of all the satellites and their possible extrapolation (beyond 
the duration of the arc). Various formats are possible (see orbite_info), some of which are "historical". The 
conventional format contains the positions and speeds over time in both the integration reference frame and 
the reference frame linked to the central body, plus the accelerations in the integration reference frame. 
Depending on the output options, it is possible to ask for an ephemerid output containing the details of each 
of the forces or the gravitational potential and its derivatives. 
 
The ephemerid file is a multi-satellite file containing all the ephemerids that are adjusted in the course of the 
process. It can be input into GINS as an "ephemerid" measurement or as a bulletin source. A number of 
conversion utilities can be used to convert the internal formats into international exchange formats, such as 
sp3. Two different realizations of the same ephemerid can be compared and graphically displayed using the 
ov (orbito_visu) software. An example of output is shown in Figure 30. 

 
Figure 30: Example of ov software output (comparison and visualization of ephemerids). Overlap 
(12hrs) of GPS and Giove orbits (data from December 2008). According to G. Bracher (2011). 
 

8.3. GNSS clocks 
 
The clock file contains the value of the c∆h clocks converted in metres for each date and any GNSS 
transmitter or receiver. When processing GNSS data, a file of this type must be attached in the Director 
header to associate the observations with the clocks of the GNSS satellites. These clocks are used to 
calculate the date and therefore must be absolute (i.e. referenced according to TAI). If they are not part of the 
estimated parameters, the precision of clock corrections directly impacts the solution. The hocomp software 
is used to graphically display and/or compare two sets of clocks. It is used to: 
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• View the clocks themselves (satellites or stations) and to compile statistics after removing a drift.  
• Compare the two sets of clocks after alignment(*) and graphically display the differences of the 

station and satellite clocks according to several alignment methods. 
• Correct from narrow lane integers: one set of day D+1 compared with D day.  
• Compare two realizations from different clocks (e.g. time transfer). 
•  

(*) The clock alignment operation is used to calculate a "mean" clock between two different sets of clocks 
and, possibly, to subtract this "mean" clock. It is also used to switch from a set of relative clocks to a set of 
absolute clocks. In the GINS software, the GNSS clocks are defined relative to a reference clock, which is 
forced to zero, otherwise the inversion problem is singular: 
 
H(t) –h0(t)  ,  (satellites) 
h(t) –h0(t)  (stations) 
 
The alignment operation uses the least square method to calculate the clock (which may be linear) that 
minimizes the differences between the clocks produced by GINS and a set of reference clocks based on TGPS 
(or TAI), such as the BRDC (Broadcast Ephemeris) clocks. This clock is then subtracted from all the clocks 
of the initial set. 
 

 
Figure 31: Clocks of a number of GPS stations (1point / 30 seconds). Values in metres (c∆h). 

 

8.4. Measurement residues / Statistics file 
 
The statistics output is a file containing the individual measurement residuals (one record per measurement). 
It also includes the information used to produce particular statistics or graphical representations. For 
example, it can be used to track the residuals along the satellite track, as a function of time or elevation. 
 
The format of the statistics file, which is the same for all the measurements, except KBR, is shown in Table 
15. 
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Field (Fortran 
notation) 

Content Unit 

I3 Type of measurement Without units 
1X,E16.10 Date Julian 50 day 
1X,E9.3 Weight Unit according to the type of measurement 
1X,F15.9 Residual (m, mm/s, seconds, etc.) 
1X,A8 Satellite code Name of the satellite 
1X, F8.3 Latitude of the satellite 

(trace on the ground) 
Degrees 

1X, F8.3 Longitude of the 
satellite 

Degrees 

I8 Station number Without units 
1X, F8.3 Measurement azimuth Degrees 
1X, F8.3 Measurement elevation Degrees 
1X, F12.3 Val1 Fields specific to the type of 
1X, F9.3 Val2 measurement 
1X, F9.3 Val3  

Table 15: Format and content of the statistics file 
 

8.5. Normal equation 
 
The normal equation (see section 6.2) is an essential output of GINS. A normal equation (or rather a system 
of normal equations) is a set of p linear equations linking p unknowns that can be written in the form of a 
matrix. The normal matrix by construction is symmetrical definite positive. 
 

8.5.1. Format 

 
The normal equation can be saved on demand or in the additional iteration. In practice, it is written in binary 
format and contains: 

- comments, 
- statistical elements (for example, the number of measurements used per satellite), 
- the number of parameters and the list of signaletic elements (see section 7.1), 
- the a priori sigma2 (defined in section 6.2), 
- the a priori values of the parameters: 𝑋! 
- the second member of the normal equation: 𝐷 
- the normal matrix itself:  𝑁 

The whole represents the normal equation 𝑁  ∆𝑋 = 𝐷 associated with the a priori values  𝑋!. 
 
These equations can be read and used by the various programs (or modules) in the DYNAMO package or 
converted into the SINEX international exchange format (Rothacher & Thaller, 2006) using the Sinextool 
utility. 
 

8.5.2. DYNAMO 

 
The DYNAMO chain is a serie of programs that use normal equations. They can be used to perform usual 
linear algebra operations. The main components of the chain are listed in Table 16 and described in detail 
below. 
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The general principle of these tools consists in performing operations on all or part of the parameters (or 
unknowns) of the normal equations. A powerful tool that is common to all the components of the chain has 
been developed in order to quickly select the parameters to which the operations are to be applied on the 
basis of their name. In addition to specific output, the set of modules also produces a listing to keep track of 
the proper execution of the operations. 
 
The normal equations can be generated by GINS or produce otherwise. 
One essential tool of the DYNAMO chain is used to generate so-called constraint equations that can be 
added to the normal equations in order to resolve them, to take account of a realistic physical constraint (for 
example, constraints of continuity between temporal parameters) or to add information from observations 
that are not processed by GINS (e.g., ground gravimetric data or measurements linking tracking stations 
obtained by a leveling process). The tool used to generate constraint equations (exe_genere_equation.ksh) 
builds the normal equations, on the basis of observations provided in a constraints file, in schematic form: 
 

𝐶! 𝐸𝐿𝑆  1 + 𝐶! 𝐸𝐿𝑆  1 +⋯ =   𝐶! ±   𝜎 
 
where [ELS i] are signaletic elements encoded on 24 characters (see section 7.1). 
 
DYNAMO_D: resolution of a normal equation 
 
This module is used to resolve normal equations using the following methods: 

- inversion by the Cholesky method  
- inversion by the conjugate gradients method 
- inversion by the specific values and vectors method  

Resolving the equation consists in inverting the normal matrix (with possible constraints) in order to obtain 
the solutions: 
 

𝑋 =   𝑋! + ∆𝑋 =   𝑋! + 𝑁!!𝐷 
 
The a posteriori variance of the residuals   is obtained from the a priori variance by : 

∗ 

𝜎!"#$! = 𝜎!"#! −
𝐷! .∆𝑋
𝑛 − 𝑝

 

 
The output consists of a file containing the solutions, possibly with the variances or the complete matrix of 
the covariances of the parameters (according to the selected inversion method). Before the inversion, it is 
possible to add a predefined constraint equation: Kaula's law for the coefficients of the gravity field, the 
minimum constraints for station network solutions or a set of constraint values specified by the user (see 
DYNAMO_C below). 
 
DYNAMO_B: reduction of normal equations 
 
By reducing a normal equation, only the useful parameters in the equation are retained. This operation is 
essential when working with equations containing a very high number of parameters to be determined by 
combining the observations over several months or years (for example, the coordinates of the stations or the 
gravity field). It consists in excluding from the equation those parameters that do not need to be solved (e.g., 
the measurement parameters). The parameters can either be completely eliminated (fixed to their initial 
values and ignored) or reduced (resolved and reinjected in the normal equation system). Reduction requires 
the sub-block of reduced parameters to be inverted and constraint equations can be added. 
 
Once the parameters have been chosen, this module breaks down the initial normal equations (which may be 
combined with a constraint) 𝑁∆𝑋 = 𝐷  into three blocks: reduced parameters, conserved or external 
parameters and eliminated parameters, according to: 
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𝑁!! 𝑁!"! 𝑁!"!

𝑁!" 𝑁!! 𝑁!"!
𝑁!" 𝑁!" 𝑁!!

∆𝑋!
∆𝑋!
∆𝑋!

=
𝐷!
𝐷!
𝐷!

 

 
The blocks relating to the eliminated parameters are simply deleted: 
 

𝑁!! 𝑁!"!
𝑁!" 𝑁!!

∆𝑋!
∆𝑋!

= 𝐷!
𝐷!

 

 
This system is then reduced to only the "c" parameters, according to: 
 
 

𝑁!! − 𝑁!"𝑁!!!! ∆𝑋! = 𝐷! − 𝑁!!!!𝐷! 
 
or 𝑁∗∆𝑋! = 𝐷∗ 
 
where 𝜎∗! = 𝜎! − !!!  !!!!!!!

!!!!
. 

 
The program output is the normal equation restricted to only the conserved parameters. 
 
DYNAMO_C: combination of normal equations 
 
This module is used to combine several equations (which may be weighted) in a single equation by summing 
the various contributions on the common parameters. For two 𝜎! equations 𝜎! and 𝜎!, weighted by p1 and p2, 
this module performs the following operations: 
 

𝑝!× 𝑁!∆𝑋 = 𝐷!
𝑝!× 𝑁!∆𝑋 = 𝐷!

𝑝!𝑁! + 𝑝!𝑁! ∆𝑋 = 𝑝!𝐷! + 𝑝!𝐷!
 

 
where 𝜎! = 𝑝!𝜎!!!  
 
The order of the common parameters must be identical in the two equations. A permutation of the unknowns 
using DYNAMO_C may be needed. 
 
DYNAMO_P: permutation of a normal equation 
 
This module places the unknowns of a normal equation in a predefined order by permuting the order of the 
lines and columns of the matrix and of the second member. After the permutation, if two or more identical 
unknowns (i.e. identical signaletic elements) are detected, then they are compacted into a single unknown. 
Unknowns with different names can be renamed with identical names so that they are considered as a single 
unknown in the compaction stage. 
 
DYNAMO_W: search for optimal weighting 
 
It is often needed to combine normal equations derived from observations of different tracking systems (e.g. 
SLR, DORIS, GNSS, etc.) of different nature (altimeter, gradiometer, gravimeter) of different precision, 
etc... The search for the optimal weighting aims to estimate the weight of each set in order to obtain the 
optimal combination of the various measurements, thereby producing the most accurate solution of the 
parameters to be determined. Helmert's method (Sahin et al, 1992) is an iterative method used to search for 
the optimal weighting between different equations. Starting with an approximate initial weighting, the 
method achieves compatibility between the a priori weighting and the residuals after the global resolution of 
the parameters of the problem. 
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DYNAMO module 
name 

Role Options for all or part 
of the parameters 

Program name (1) 

DYNAMO_B Reduction of a 
normal equation 

Conservation (EXT), 
 elimination (ELI),  
or reduction (RED) (2) 

exe_dynamo_b.ksh (3) 

DYNAMO_C Combination of 
normal equations 

(2) exe_dynamo_c.ksh (3) 

DYNAMO_D Resolution of a 
normal equation by 
Cholesky or 
conjugate gradients 

Resolution (RES)  
or not (FIX) (2) 

 
exe_dynamo_d.ksh (3) 

DYNAMO_P Permutation of a 
normal equation 

Compaction of identical 
unknowns (2) 

exe_dynamo_p.ksh (3) 

VERIF Verification of a 
normal equation 

- exe_verif.ksh 

DYNAMO_W Search for 
weighting by 
Helmert's method  

Limitation of the test to 
the important 
parameters only 

 
exe_dynamo_w.ksh (3) 

GENERE_EQUATION Generation of a 
normal equation on 
the basis of a 
"constraint" type 
file  

Creation of parameters 
and the associated linear 
equations  

 
exe_genere_equation.ksh 

(1) All these commands have an online help function that can be accessed using the "–help" 
argument. 
(2) It is also possible to rename the parameters and modify their a priori value for all these modules. 
(3) A Director file specifying the operations to be performed is necessary for these modules. 

Table 16: Main components of the DYNAMO program chain 
 

9. SUPPLEMENTS TO THE ALGORITHMIC DOCUMENTION 
 
Algorithmic documentation of the Obelix forces library, version L20, 2012 
User documentation of the Obelix forces library (2012 version). 
Using external macro-models in GINS (2011). 
Processing parabolas in GINS (2011) 
GINS: description of the Director (upated with each new software version). 
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11. ACRONYMS 
 
CNES: Centre National d’Etudes Spatiales (French Space Agency) 
CRS: Celestial Reference System 
DORIS: Doppler Orbitography and Radiopositioning Integrated by Satellite 
DSN: Deep Space Network 
EOP: Earth Orientation Parameters 
EQNA: Equations normales (normal equations) 
ELS: Eléments signaletic elementalétiques (parameter names) 
ESA: European Space Agency  
GINS: Géodésie par Intégrations Numériques Simultanées (geodesy by simultaneous numerical integrations) 
GNSS: Global Navigation Satellite System 
GOCE: Gravity field and steady-state Ocean Circulation Explorer 
GPS: Global Positioning System 
GRACE: Gravity Recovery And Climate Experiment 
GRGS: Groupe de Recherche de Géodésie Spatiale (space geodesy research group) 
IAU: International Astronomical Union 
ICRF: International Celestial Reference Frame  
IERS: International Earth Rotation Service 
ITRF: International Terrestrial Reference Frame 
LEO: Low Earth Orbiter 
NRO: Non-Rotating Origin 
PRARE: Precise Range And Range-rate Equipment 
SLR: Satellite Laser Ranging 
SOFA: Standards Of Fundamental Astronomy  
IAT: International Atomic Time 
UTC: Coordinated Universal Time 
BDT: Barycentric Dynamical Time 
TRS: Terrestrial Reference System 
VLBI: Very Long Base Interferometry 
 


