

ONERA

THE FRENCH AEROSPACE LAB

return on innovation

www.onera.fr

MicroSTAR accelerometer

Bernard Foulon, Bruno Christophe, Françoise Liorzou & Vincent Lebat Bernard.foulon@onera.fr

return on innovation

Electrostatic space accelerometer at Onera

Cubic Proof-mass 3 linear accelerations 3 angular accelerations

Next missions 2020 - 2030 Geodesy NGGM (ESA) – GRACE-2 (NASA)

> -Smaller, less consumption -3 sensitives axis

-comparable noise and thermal performances

Parallelipipedic Proof-mass 2+1 linear accelerations 1+2 angular accelerations On-ground levitation

Accelerometer for Gravity missions: CNES – CHAMP – 2000 – 10^{-9} m/s²/Hz^{1/2} JPL – GRACE – 2002 – 10^{-10} m/s²/Hz^{1/2} ESA – GOCE – 2009 – 10^{-12} m/s²/Hz^{1/2} JPL – GRACE-FO – Launch foreseen in 2017- 10^{-10} m/s²/Hz^{1/2}

Spherical Proof-mass

3 linear accelerations

3/

CNES – CACTUS Accelerometer Lanch on the 15th May 1975 (Diamant BP4) Accelerometer for fondamental physics: CNES – MICROSCOPE –10⁻¹² m/s²/Hz^{1/2} Launch foreseen in 2016

Cylindrical Proof-mass 3 linear accelerations

Electrostatic accelerometer - Principle

Capacitive detection and electrostatic action

Accelerometer principle of operation

Accelerometer Modes

Large Range Mode (LRM) for acquisition : V_p = 40 V and V_d = 1,25 Vrms Nominal Range Mode (NRM) for science : V_d = 10 V and V_d = 5 Vrms

Electrostatic accelerometers for Earth Gravity Missions

GRACE (NASA-JPL), March 2002

Microwave K-Band Inter satellite Ranging System

Electrostatic Accelerometer

The accelerometers provide the NG acceleration to correct the inter S/C range from NG contribution in order to retrieve the pure gravitational effect.

- $\Gamma_{\rm n}$: 1.0·10⁻¹⁰ ms⁻² /Hz^{1/2}
- $\Gamma_{\rm max}$: 5.10⁻⁵ ms⁻²

GOCE (ESA), March 2009

Drag Free System with Electric Propulsion

Gradiometer (EGG) with 6 Accelerometers

The common mode the accelerometers of each Gradio arm provides the NG acceleration to feed @10Hz the Drag Free System

Differential accelerometer measurements

are used to retrieve the GGT components

- $\Gamma_{\rm n}$: 2.0·10⁻¹² ms⁻² /Hz^{1/2}
- Γ_{max} : 6.10⁻⁶ ms⁻²
- [5·10⁻³; 10⁻¹] Hz

GRACE Accelerometer : Performance & Lessons

GOCE accelerometer performance & lessons

Good health test of the position sensors

Bias evolution of the position sensors ASH2 accelerometer example : 1.45×10^{-5} V/Day

PSD noise of the GOCE accelerometer (by arm pair)

 $\begin{array}{l} \underline{\text{Accelerometer performance}} \ (40\text{-}100 \ \text{mHz}), \\ ASH_{14} \ \text{noise:} \ 3.9 \ 10^{\text{-}12} \ \text{m/s}^2/\text{Hz}^{1/2} \\ ASH_{25} \ \text{noise:} \ 3.1 \ 10^{\text{-}12} \ \text{m/s}^2/\text{Hz}^{1/2} \\ ASH_{36} \ \text{noise:} \ 6.7 \ 10^{\text{-}12} \ \text{m/s}^2/\text{Hz}^{1/2} \\ \underline{\text{Expected:}} \ 2.0 \ 10^{\text{-}12} \ \text{m/s}^2/\text{Hz}^{1/2} \end{array}$

Functional and performance verification on pendulum bench

THE FRENCH ARROSPACE LAS

Qualification / Acceptance Tests

2. Vibration and thermal cycling

3. Free fall in Bremen Zarm drop tower

MicroSTAR Accelerometer : prototype description

SENSOR UNIT

Electrode support plates

MicroSTAR Accelerometer : technology

dimension

Proof-mass dimension:	30×30×30 mm³
Mass:	238 g
Inertia:	3.564×10 ⁻⁵ kg.m ²
Gap:	300 µm
Free motion:	± 60 μm
Electrode area:	2.114 cm ²
Electrode capacitance:	4 pF
Gold wire	L 22 mm Φ 7.5 μm

Electrode plate design

Electrode plate after US machining

- > Glass material (ULE)
- > Optical polishing
- > High accuracy of the final plate in accordance with the peformance budget

ULTRA-SONIC MACHINING OF THE CORE PLATES

→Specific Process developed by ONERA

Gold coating

ULE plate on ultra-sonic machine (ONERA patent)

Control

MicroSTAR Accelerometer packaging

MicroSTAR Accelerometer : Measurement noise

Drop Tower test

Catapult

Slow motion (speed/2)

Catapult Test : GRACE-FO EM / GRACE Comparison

GFO EM in LRM : Vp = 40 V and Vd = 1.25 Vrms GRACE in LRM : Vp = 40 V and Vd = 5 Vrms Measurement filtered with 1^{st} order at 10 Hz Equivalent to the $\Sigma\Delta$ ADC averaging

• GRACE AZ \rightarrow 5.7×10⁻⁶ m.s⁻²

GOCE : Comparison between Angular Accelerations from Linear and Angular outputs

Angular acceleration noise (uncalibrated data)

Conclusion

- MicroSTAR proposed for GRASP Project with 3x3x3 cm² cubic proof-mass
- Same technologies inherited from previous GRACE, GOCE, GFO and MICROSCOPE missions
- No more on-ground levitation but inhanced drop tower testing thanks to the catapult facility as for MICROSCOPE
- Non-Gravitational forces measurement to improve POD
- 3 linear accelerations measurements
- PSD noise < 10^{-11} ms²/Hz^{1/2} in [10^{-3} Hz 0.1 Hz] MBW
- 3 angular acceleration measurements to improve attitude control and determination by hybridation with Star Trackers measurement as in GOCE

Thank you for your attention

return on innovation