

Tests de physique fondamentale à partir de la dynamique de GRASP

Gilles METRIS

Univ. Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Géoazur

Dynamique orbitale et Physique Fondamentale

- L'observation du mouvement des satellites peut tester les théories de la gravitation, au même titre que d'autres effets (potentiel, marées, atmosphère...)
- Mais les effets Post-Newtonien sont faibles → 2 conditions requises :
 - Observations de hautes précision sur de longues durées (années)
 - Discrimination par rapport à d'autres effets plus importants et pas toujours parfaitement modélisés
- Candidats essentiels jusqu'à présent : LAGEOS (1976) et LAGEOS II (1992)
 - Suivis par télémétrie laser depuis des décennies
 - Altitude élevée (6000 km), de forme sphérique et très dense → dynamique relativement simple (bien que…)
 - → Observation de l'effet Lense-Thirring à quelques dizaines de % (Ciufolini,2007)
 - → Tentative de détermination des paramètres PPN alpha liés à une origine privilégiée (Vokrouhlicky et Metris, 1997)

Les atouts potentiels de GRASP

- Altitude pas trop basse → les effets gravitationnels les plus complexes (marées, mouvements fluides...) sont modérés
- Effets non gravitationnels mesurés grâce à l'accéléromètre
- L'ensemble des techniques de suivi orbitographique disponibles permet d'envisager une excellente reconstitution de la dynamique

Précession du périgée

 C'est le célèbre effet calculé par Einstein expliquant l'avance observée du périhélie de Mercure

$$\frac{d\omega}{dt} = 3\left(2\gamma_{PPN} - \beta_{PPN}\right) \frac{GM}{c^2} \frac{\omega_{orb}}{a(1 - e^2)} \quad \left(\infty a^{-\frac{5}{2}}\right)$$

• Attention, on n'observe pas ω mais $e \omega \rightarrow$ l'effet sur le périgée n'est observable que pour les orbites suffisamment elliptiques.

Précession du périgée : chiffres

Limite actuelle sur β et γ de l'ordre de 10^{-5}

	Lageos	Lageos 2	GRASP	GRASP 2
a (km)	12253	12163	8378	8378
е	0.0045	0.014	0.01	0.1
I (deg)	109.8	52.6	98	98

	dω/dt (mas/an)	a dω/dt (m/an)	ea dω/dt (m/an)	Précision orbit (m)	$\delta(2\gamma-\beta)$ sur 1 an
Lageos	3300	196	0.9	10-2	10-2
Lageos 2	3364	198	2.8	10-2	3.6 10 ⁻³
GRASP	8544	347	3.5	10 ⁻³	2.9 10-4
GRASP 2	8630	350	35	10-3	2.9 10 ⁻⁵

- Orbite elliptique
- Restitution au niveau du mm
- Accéléromètre pour discriminer des effets non-gravi sur le périgée

L'effet Lense-Thirring : principe

- Entrainement du référentiel (Frame dragging) autour d'un corps massif en rotation calculé par J. Lense et H. Thirring en 1918 dans le cadre de la RG.
- Induit en particulier une précession du nœud et du périgée de l'orbite

$$\frac{d\Omega}{dt} = 2 \gamma_{PPN} \frac{\omega_{orb}^2}{c^2 (1 - e^2)^{\frac{3}{2}}} J \quad \left(\infty a^{-3} \text{ mais effets } J_2 \infty a^{-\frac{7}{2}} \right)$$

$$\frac{d\omega}{dt} = -6 \gamma_{PPN} \frac{\omega_{orb}^2}{c^2 (1 - e^2)^{\frac{3}{2}}} \cos(I) J$$

 $J \approx 9.8 \, 10^8 \,\mathrm{m}^2 \mathrm{s}^{-1}$: moment angulaire par unité de masse

L'effet Lense-Thirring : chiffres

Limite actuelle:

- 10 à 30% (selon analyses) avec LAG et LAG 2 (Ciufolini,2007; lorio, 2013)
- 19% avec GPB (Everitt et al, 2011)

	dΩ/dt (mas/an)	a dΩ/dt (m/an)	Précision orbit (m)	Précision relative
Lageos	31	1.8	10-2	5 10 ⁻³
Lageos 2	31	1.8	10-2	5 10 ⁻³
LARES	118	4.5	10-2	2.2 10 ⁻³
GRASP	96	3.9	10-3	2.5 10-4
GRASP 2	99	3.9	10-3	2.5 10-4

Restitution au niveau du mm

		dω/dt (mas/an)	a dω/dt (m/an)	ea dω/dt (m/an)	Précision orbit (m)	Précision relative
	Lageos	31	1.8	0.0008	10-2	1.2
?	Lageos 2	57	3.4	0.05	10 ⁻²	0.21
	GRASP	40	1.6	0.02	10 ⁻³	0.61
(GRASP 2	40	1.7	0.16	10-3	0.06 •

- Orbite elliptique
- Restitution au niveau du mm
- Accéléromètre

Effet repère privilégié : principe

- Certaines théories de la gravitation font appel à un repère privilégié (Will et Nordtvedt, 1972; Damour et Esposito-Farèse, 1994)
- Effets non existants en RG
- 2 paramètres PPN α₁ et α₂

$$\Psi_P = \frac{d}{dt} \left(e \exp(i\omega) \right) = -\alpha_1 \frac{\omega_{orb}^2}{4c^2} a \left[(\vec{h} - i\vec{k}) \cdot \vec{w}_0 \right] + \cdots \quad \left(\infty a^{-2} \right)$$

$$\Psi_{Q} = \frac{d}{dt} \left(I - \iota \sin(I_0) \Omega \right) = -\alpha_2 \frac{\omega_{orb}}{2c^2} \left[(\vec{h} - \iota \vec{k}) \cdot \vec{w}_0 \right] \left[\vec{w} \cdot \vec{w}_0 \right] + \cdots$$

 \vec{w}_0 : vitesse de la Terre par rapport au repère privilégié ($w_0 \approx 3.7 \, 10^5 \, \text{m}^2 \text{s}^{-1}$)

Effet repère privilégié : chiffres

Limite actuelle (LLR) : $\approx 10^{-4}$ sur α_1 et ≈ 2 10^{-5} sur α_2 Vokrouhlicky et Metris (non publié) ont obtenu 10^{-6} sur α_2 avec LAGEOS

	$\psi_{P}/\alpha_{1}^{*}10^{-6}$ (mas/an)	a ψ _P /α ₁ *10 ⁻⁶ (m/an)	Précision orbit (m)	Précision α_1
Lageos	5 10 ⁻³	3 10-4	10-2	3 10-5
Lageos 2	5 10 ⁻³	3 10-4	10-2	3 10-5
GRASP	10-2	5 10-4	10-3	2 10-6
GRASP 2	10-2	5 10-4	10-3	2 10-6

Restitution au niveau du mm

	$\psi_Q/\alpha_2^*10^{-6}$ (mas/an)	a $\psi_{Q}/\alpha_{2}^{*}10^{-6}$ (m/an)	Précision orbit (m)	Précision α_2
Lageos	0.21	0.012	10-2	8 10-7
Lageos 2	0.21	0.012	10-2	8 10-7
GRASP	0.37	0.015	10-3	7 10-8
GRASP 2	0.37	0.015	10-3	7 10-8

- Restitution au niveau du mm
- Accéléromètre

Synthèse

- 1. Orbite GRASP, quasi-circulaire, sans accéléromètre, positionnement au mm :
 - Les effets séculaires sur le nœud peuvent apporter une contrainte supplémentaire très compétitive sur le LT
 - Détermination compétitive du paramètre PPN α₂ lié à l'effet d'un repère privilégié (mais corrélation avec marées K1 et K2)
- 2. Avec en plus un accéléromètre :
 - Amélioration des 2 points ci-dessus
 - Détermination compétitive du paramètre PPN α_1 lié à l'effet d'un repère privilégié
- 3. Avec en plus orbite elliptique (e=0.1)
 - Contrainte compétitive sur 2γ-β par observation de la précession relativiste du périgée

