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Orbit determination as parameter estimation

Calculation of ephemerides und orbit determination are the most 
important tasks of applied astrodynamics (celestial mechanics).

Orbit determination may be viewed as the inverse task of ephemeris 
calculation.

Whereas the production of ephemerides may be viewed as “pure 
routine work”,  orbit determination is much more more difficult.

In pure orbit determination we have the task 
– to find a particular solution of the EQs of motion for a particular CB

– from observations as well as
– to reconstruct the trajectory/trajectories of the observers.

In satellite geodesy one may often end up with a problem with 
thousands of parameters.

Today, there are many observation types (astrometric positions, 
distances, Doppler observations, etc.). 
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The classical task
From a series of astrometric places

– ti, αi’, δi’, i=1,2,…,n > 2
(observation times, right ascensions, declinations) the (osculating) orbit 

elements, e.g., 
– a, e, i, Ω, ω, T0 

of a CB have to be determined.
The EQs of motion of the CB and the trajectories of the observers are 

assumed as known. Provided the time interval [t1,tn] is short, one 
may use the EQs of the two-body problem::

3r
µ− ⋅ r

r =ɺɺ

The constant µ depends on the CB. If one has to deal with a (minor) 
planet or a comet, one has:

µ=k2=0.017202098952, 
For artificial Earth satellites: µ = GM =398. 6004415⋅1012 

The constant has the dimension [length3/time2].
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The classical task

The unit vector e(t) is defined by the R.A. α and declination δ of the 
CB. e(t) defines the astrometric place of the CB at time t.

Precisely speaking e(t) defines the direction from the observer at 
observation time t to the CB at time t-∆/c, where ∆ is the 
distance from the observer at t to the CB at time t-∆/c.

c = 299792.458 km/s is the speed of light. 

R(t) is the heliocentric position vector (assumed as known).
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The classical task

The astrometric place of the CB and the heliocentric positions of 
CB and observer are related by:
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The classical task

We make the distinction of 
– first orbit determination

– orbit improvement.

depending on whether
– approximate orbit elements are not available or available and used.

Today, orbit improvement is routine, whereas first orbit determination
still may contain „artistic“ elements.

We will first deal with routine (orbit determination), then with the fine art 
of first orbit determination.

We will first treat the orbit as a solution of the two-body problem. Only 
in the section “variational equations” we will deal with the more 
general case.

This approximation is usually adequate if the time span covered by 
observations is a small fraction of the revolution period (this is true in 
the planetary system and in satellite geodesy,).
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Orbit improvement
Orbit improvement:
We assume that a set of approximate orbital elements is known:

We develop the observed functions into a Taylor series using the 
above values as origin of the development and truncate the 
series after the terms of first order:

where we used for the sake of convenience:
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Orbit improvement

Neglecting the terms of order 2 and higher we obtain the following 
linear observation equations in the increments ∆Ij = Ij - IjK

The quantities v..on the RHS are called the residuals of the 
adjustment. As there usually are more observations than 
parameters we have to adopt a criterion to obtain a unique 
solution, e.g., the least squares criterion:
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Orbit improvement

We replace the residuals by the left-hand sides of the observation 
equations and take the derivatives of the resulting expression 
w.r.t. the six parameters ∆j to obtain the linear normal equation 
system with six equations and six unknowns:

where:

The normal equation system (NEQs) is symmetric, positive-definite 
and may be solved by the standard procedures of linear algebra. 
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Orbit improvement

The terms αK and δK are obtained by the standard formulas of the TBP. 
We still have to say how to calculate the partial derivatives in the 
observation equations and the NEQs. Let us first apply the chain rule: 
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The gradients of the observed angles are obtained as:

and
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Orbit improvement

The partial derivatives of the orbital elements are obtained by taking the 
partial derivatives of the formulas of the TBP w.r.t. the osculating 
elements:
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For the partial derivative w.r.t. the inclination i we obtain, e.g:
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The other five partial derivatives are formed in an analogous way. For 
the elements a und e one has to take into account that they also
appear in E (Kepler’s EQ). T0 only appears in E.
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Orbit improvement

Partial derivatives of a two-body orbit w.r.t. a (left, top), e (left, bottom), I 
(right, top) and ω (right, bottom). Minor planet with revolution period 
of about four years, e=0.1, i=11.58o. (red: x, green: y, blue: z)
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Orbit improvement

Orbit improvement in principle is a non-linear parameter estimation 
process. 

The original, non-linear observation equations read as:
ti: αi – αi’ = v αi and δi – δi

’ = vδi , i =1,2,..,n
The observed functions αi(a,e,I,Ω,ω,T0) and δi(a,e,I,Ω,ω,T0) have to be 

linearized, which results in linear observation equations.
The linear(ized) observation equations are solved (if necessary 

iteratively) using the method of least squares represented by the 
least squares criterion acting on the residuals.

The iterative orbit improvement process may be terminated as soon as 
the terms of higher the first order in the observation equations are 
negligible compared to the mean errors of the observations.

Let us add at this point two essential facts related to least squares 
solutions, namely the rms error a posteriori of errors and the errors 
of the estimated parameters (other characteristics will be presented 
in the lecture “advanced parameter estimation”).
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Orbit improvement

Leaving out the iteration index “K” the mean error a posteriori m0 of 
the observations is defined as:

m0 = ( ( (vαi cosδi’)2 + vδi
2))/( 2 n - 6 ) )1/2

where n is the number of astrometric places (i.e., of pairs αi δi).

The NEQs (without superscript “K”) may by written as:
N ∆I = b

Its solution may be qiven the form:
∆I = Q b , where Q = N-1

The matrix Q is called the co-factor matrix of the adjustment.
The mean error a posteriori of the estimated parameters are:

m(∆Ij) = m0 Qjj
1/2

implying that the diagonal elements of Q must be positive (matrix N 
must be positive-definite).
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First Orbit Determination: Circular Orbit

The relationship between orbital elements and observed functgions is 
non-linear – and remains so in first orbit determination.

The key to the solution of the problems resides in the reduction of the  
number of parameters.

The principle will be explained using the procedure to determine a 
circular orbit.

If a (supposedly) new CB is detected one often has only two obser-
vation (or more than two in very short time intervals). Determining a 
circular orbit seems appropriate under such circumstances.

The assumption of a circular orbit often makes sense (e.g., for minor 
planets or for satellites in the geostationary belt). 

A circular orbit is defined by only four parameters (instead of six 
because we may put e=0, ω=0).

We may even reduce the problem to find the roots of a scalar function 
B(a).
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First Orbit Determination: Circular Orbit

Assuming a value for a, the CB must 
lie on a heliocentric sphere with 
radius a. 

Furthermore the CB must lie at the  
observation times t1 and t2 the on 
straight lines (rays) defined by the 
unit vectors e1 und e2.

This implies that the positions P1, P2 of 
the CB at t1 , t2 are known, implying 
in turn that the angle ∠(P1S P2) =: 
∆∆∆∆ug is known.

For a circular orbit the same angle ∆u may be calculated using the 
law of dynamics  ∆ud = n (t2 – t1), where n = ( µ/a3)1/2.

Determining a circular orbit is thus equivalent to find the roots of the 
function B(a) := ∆ug(a) – ∆ud(a) !
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First Orbit Determination: Circular Orbit

Determining a circular orbit of 
MP Silentium with CelMech, 
(using the 3rd and 5th of the 
observations

Three solutions are obtained: 
the first one is the orbit of the 
observer (?), the third one 
would result in a retrograde 
(i>90o). Only the solution at 
a=2.4 remains.

The resulting elements are

a=2.37 AU, i=5.79o, Ω=6.91o

These estimates are close to the 
“true elements”.

B(a)= ∆ug(a) – ∆ud(a)
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Orbit Determination as Boundary Value Problem

For 2 observation times we may 
write

Defining the orbit parameters as

reduces the number of six orbit 
parameters to two (the first two).

The two parameters are systematically 
varied to represent the other obser-
vations in the best possible way 
(LSQ sense).

For each set ∆b1 ∆b2 RMS a posteriori 
is calculated. The correct solution 
minimizes the RMS. 
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Orbit Determination as Boundary Value Problem

Adopting values for the topocentric distances at observation times with 
indices b1 und b2, allows it to calculate the CB’s heliocentric 
positions at these epochs, as wells.

For orbit determination we also need r(ti) for i ≠ b1, b2 . With these 
heliocentric positions we may calculate the observed functions αi

and δi associated with the observations αi’ and δi’ and the residuals        
cos δi’ (αi’– αi),  (δi’– δi).

By systematically varying the two topocentric distances we obtain the 
orbit parameters minimizing the sum of the residuals squares.

We thus have to solve the following boundary value problem:
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Orbit Determination as Boundary Value Problem
A general solution of the boundary problem is really difficult. We may, 

however, make us of the fact that time interval covered by the 
observations is short.

Let us simply seek the solution in the form of polynomials (Taylor 
series) for each component. A solution without iterations is possible 
if the polynomial degree is q=3:
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t0 in principle may be selected arbitrarily. We will select it to lie in the 
center of the interval.

The coefficients will be determined (a) to meet the boundary conditions 
and to meet the EQs of motion at t0.

By doing that the condition equations are linear in the coefficients ci

and thus may be easily calculated. 
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Orbit Determination as Boundayry Value Problem

The system of condition equations reads as follows:
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With given RHSs the above equations may be solved easily. 

Varying ∆1 and ∆2 systematically, the correct solution minimizes the 
sum of the squared residuals. 
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Orbit Determination as Boundayry Value Problem

The program system CelMech contains ORBDET which may be used 
for first orbit determination of minor planets or artificial Earth 
satellites (or space debris).

As an example the orbit of MP Silentium was determined with a special 
algorithm reducing the problem to a one-dimensional parameter 
estimation:
– The left boundary vaue ∆∆∆∆1 is varied systematically. For each selected 

value the best possible ∆∆∆∆2 is determined by least squares (orbit 
determination with only one parameter). 

– The (logarithms) of the mean errors a posteriori of these parameter 
estimation processes are drawn as a function of ∆∆∆∆1 . 

– The minimum (the minima) of this function are calculated and used as 
candidate boundary values.

For details consult Beutler (2005), Vol. 1, Sec 8.3.4, first example. 
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Orbit Determination as Boundayry Value Problem

Observations 1-11 of Silentium were used.
Observations 3 und 11 were selected to define the boundaries.
The figure shows the logarithm of the RMS errors. The minimum 

at ∆1=0.882 ΑU is well defined. 
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Parameter estimation: Variational equations

So far it was assumed that the orbit is adequately described by the TBP, 
what is usually true when the time interval covered by observations is 
much shorter than the revolution period of the CB.
For CBs in the planetary system all observations have to refer to one and 
the same opposition of the CB. For objects in the Earth-near space the 
observations have to refer to the same observation night (they have to lie 
within a few minutes for LEOs within about an hour for objects in the GEO).
For orbit improvement need the partial derivatives of the observed 
functions w.r.t. the orbit parameters. We used the chain rule to write these 
partial derivatives as a scalar product of the gradient of the observed 
function w.r.t. the topocentric vector from the observer to the CB and the 
partial derivative of the geo- or heliocentric position vector of the satellite 
w.r.t. the orbit parameter. 
For an observed function o (e.g., angle, distance, coordinate) we put:

3
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Parameter estimation: Variational equations

We use the same decomposition when the orbit is described by a 
general EQ of motion (more complicated than that of the TBP).

As the gradient of the observed function will be the same, one only has 
to deal with the partial derivatives of the orbit r(t) w.r.t. the orbit 
parameters.

Generalizations are, however, necessary:
– The orbital parameters I1, I2, … , I6 have to be replaced by the 

osculating elements I1(t0), I2(t0), … , I6(t0) at the starting epoch t0 (or by 
any set of six parameters uniquely defining the state vector at t0).

– We have to allow for orbit parameters defining the force model of the 
general EQs of motion. These parameters are called dynamical.

– We may have to allow for instantaneous velocity changes at predefined 
epochs. 
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Parameter estimation: Variational equations

Let us assume that a satellite orbit is parameterized by six 
osculating elements (defining the initial state vector at t0) and d 
so-called dynamical parameters qi , defining the force field acting 
on the satellite. We may think of the qi as the coefficients of the 
Earth’s gravity field or any other scaling factors of force 
constituents.
We are interested in the partial derivative of the orbit w.r.t. any of 
the parameters pi , i=1,2,…, 6+d .
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Parameter estimation: Variational equations

We denote z(t) as the partial derivative of the orbit r(t) w.r.t. an 
arbitrarily selected parameter p. The variational EQs are obtained by 
taking the partial derivate of the EQs of motion.
The corresponding initial conditions are obtained by taking the partial 
derivate w.r.t. to p of the corresponding initial values of the EQs of 
motion. It is straight forward, but may be cumbersome to calculate 
the elements of the matrices A i , i=0,1.
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Parameter estimation: Variational equations

The variational equations are linear DEQs.
p = osculating element (left): The variational EQs are homogeneous, the 
initial state vector is ≠ 0.
p = dynamical parameter (right): The variational EQs are inhomogeneous, 
the initial state vector is = 0. 
The homogeneous part is the same in both types of variational EQs. 
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Parameter estimation: Variational equations

Characteristics of homogeneous linear DEQs:
Each homogeneous solution may be written as a linear combination of 

the initial values at t0.
There are six independent solutions of the homogeneous EQ on the

previous page – corresponding to the six osculating elements.
The six solutions are said to form a complete system of solutions.
Any homogeneous solution is a LC of the six independent solutions.

An instantaneous change δv of the velocity vector at a particular epoch 
t along a user-defined unit vector e may be interpreted as a change 
in the initial state vector referring to that epoch. 

Consequently the partial derivative of the orbit w.r.t. this parameter δv
may be written as a linear combination of the six solutions forming 
the complete system. The coefficients of the LC are constant.   
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Parameter estimation: Variational equations

Let us assume that we want to allow for an instantaneous velocity 
change of the orbit r(t) at the epoch ti in the direction of the unit vector 
e. We want the resulting orbit to be continuous.

The difference of the new – old orbit at ti obviously is given for t = ti by:

Let us assume that at the epoch ti we want to allow for an instantaneous 
velocity change of the orbit r(t) in the direction of the unit vector e. We 
want the resulting orbit to be continuous.

The difference of the new – old orbit for t ≥ ti obviously is given by:
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Parameter estimation: Variational equations

where:

As the partial derivative is a solution of the homogeneous variational
equations, we may write

The time independent coefficients βk still have to be determined.
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Parameter estimation: Variational equations

This is, however, easy: we just have to introduce the LC of the six 
partial derivatives w.r.t. the osculating elements at time t0 into the 
equations defining the partial derivatives w.r.t. δv at time ti:

Observe that this system can be solved for good and all.
There is one set of coefficients for each pulse. Even if hundreds of 

pulses are introduced, there is no necessity to solve additional
variational equations. All partial derivatives may be found as LC of 
the six partial derivatives w.r.t. the osculating elements.
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Parameter estimation: Variational equations

What about the variational equations associated with the dynamical 
parameters qi?

The theory of linear DEQs tells that the solution of an inhomogeneous 
linear DEQ may be written as a LC of the six homogeneous 
solutions forming the complete system. The coefficients of the six 
solutions are, however, time-dependent.

The time-dependent coefficients may be found by quadrature, i.e., as 
solutions of definite integrals (no longer as the solution of linear 
DEQ systems).

Details may be found in Beutler (2005), Vol. 1, Sec 5.2, where the 
problem is solved for a DEQs of order n and dimension d. 


