

Fondements des Conventions IERS

Le champ de gravité, partie statique

Richard Biancale / CNES / GFZ

George COPS

CIIS INSU Conservatoire

UPF le cnam

Les Conventions IERS

Chapitre 6: geopotential

Geopotential 6

Gravitational models commonly used in current (2010) precision orbital analysis represent a significant improvement with respect to geopotential model EGM96, the past conventional model of the IERS Conventions (2003), thanks to the availability of CHAMP < > and, most importantly, GRACE < > data in the 2000s. The IERS, recognizing the recent development of new gravitational models derived from the optimal combination of GRACE data with high resolution gravitational information obtained from surface gravimetry and satellite altimetry data, recommends at this time the EGM2008 model as the conventional model.

The conventional model that is presented in Section 6.1 describes the static part of the field and the underlying background model for the secular variations of some of its coefficients. In addition, other time varying effects should be taken into account: solid Earth tides (Section 6.2), ocean tides (Section 6.3), solid Earth pole tide (Section 6.4), and ocean pole tide (Section 6.5).

The geopotential field V at the point (r, ϕ, λ) is expanded in spherical harmonics up to degree N as

$$V(r,\phi,\lambda) = \frac{GM}{r} \sum_{n=0}^{N} \left(\frac{a_e}{r}\right)^n \sum_{m=0}^{n} \left[\bar{C}_{nm}\cos(m\lambda) + \bar{S}_{nm}\sin(m\lambda)\right] P_{nm}(\sin\phi)$$
(6.1)

(with $\bar{S}_{n0} = 0$), where \bar{C}_{nm} and \bar{S}_{nm} are the normalized geopotential coefficients and \bar{P}_{nm} are the normalized associated Legendre functions. The normalized Legendre function is related to the classical (unnormalized) one by

$$P_{nm} = N_{nm}P_{nm}$$
, (6.2a)

where

$$N_{nm} = \sqrt{\frac{(n-m)!(2n+1)(2-\delta_{0m})}{(n+m)!}}, \qquad \delta_{0m} = \begin{cases} 1 & \text{if } m = 0\\ 0 & \text{if } m \neq 0 \end{cases}$$
(6.2b)

Correspondingly, the normalized geopotential coefficients $(\bar{C}_{nm}, \bar{S}_{nm})$ are related to the unnormalized coefficients (C_{nm}, S_{nm}) by

$$C_{nm} = N_{nm}\overline{C}_{nm}, \quad S_{nm} = N_{nm}\overline{S}_{nm}.$$
 (6.3)

The scaling parameters (GM, a_e) associated with the model are described in Section 6.1. Sections 6.2 to 6.5 provide variations to the normalized coefficients $(\bar{C}_{nm}, \bar{S}_{nm})$ due to the physical effects described in each section.

6.1 Conventional model based on the EGM2008 model

Table 6.1: Sugge	sted truncation	levels for	use of E	GM2008 at	different	orbits
------------------	-----------------	------------	----------	-----------	-----------	--------

Orbit radius / km	Example	Truncation level
7331	Starlette	90
12270	Lageos	20
26600	GPS	12

Table 6.2:	Low-degree	coefficients of	the conventional	geopotential	mode
------------	------------	-----------------	------------------	--------------	------

	Coefficient	Value at 2000.0	Reference	Rate / yr^{-1}	Re
C	C_{20} (zero-tide) C_{30} C_{40}	$\substack{-0.48416948\times10^{-3}\\0.9571612\times10^{-6}\\0.5399659\times10^{-6}}$	Cheng et al., 2010 EGM2008 EGM2008	$\begin{array}{c} 11.6\times10^{-12}\\ 4.9\times10^{-12}\\ 4.7\times10^{-12}\end{array}$	Nerem Cheng Cheng

¹http://op.gfz-potsdam.de/champ/ ²http://www.csr.utexas.edu/grace/ ⁹http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/ The EGM2008 model (Pavlis *et al.*, 2008) is complete to degree and order 2159, and contains additional spherical harmonic coefficients up to degree 2190 and order 2159. The GM_{\oplus} and $a_{\rm e}$ values reported with EGM2008 (398600.4415 km³/s² and 6378136.3 m) should be used as scaling parameters with its gravitational potential coefficients. They are to be considered as TT-compatible values. The recommended TCG-compatible value, $GM_{\oplus} = 398600.4418 \text{ km}^3/\text{s}^2$, should be used with the two-body term when working with Geocentric Coordinate Time (TCG) (398600.4415 or 398600.4356 should be used by those still working with Terrestrial Time (TT) or Barycentric Dynamical Time (TDB), respectively). The EGM2008 model (including error estimates) is available at \triangleleft_3^{3} >.

Although EGM2008 is complete to degree and order 2159, most users in space geodesy will find their needs covered by a truncated version of the model. Suggested truncation levels as a function of the orbit of interest are listed in Table 6.1 It is expected that these truncation levels provide a 3-dimensional orbit accuracy of better than 0.5 mm for the indicated satellites (Ries, 2010).

The EGM2008 model was based on the ITG-GRACE03S GRACE-only gravitational model (), see also Mayer-Gürr, 2007) which is available along with its complete error covariance matrix to degree and order 180. Therefore the static gravitational field was developed assuming models complying with the IERS Conventions (2003) and complemented by the following:

- ocean tides: FES2004 (Lyard et al., 2006),
- ocean pole tide: Desai (2003, see Section 6.5).
- atmosphere and ocean de-aliasing: AOD1B RL04 (Flechtner, 2007).

For some of the low-degree coefficients, the conventional geopotential model uses values which are different from the original EGM2008 values. The static field also assumes values for the secular rates of low-degree coefficients. In order to use the static field properly and project it in time, the secular rates should be accounted for. The instantaneous values of coefficients \bar{C}_{n0} to be used when computing orbits are given by:

$$C_{n0}(t) = C_{n0}(t_0) + dC_{n0}/dt \times (t - t_0)$$
(6.4)

where t_0 is the epoch J2000.0 and the values of $C_{n0}(t_0)$ and dC_{n0}/dt are given in Table 5.2. Note that the zero-tide C_{20} coefficient in the conventional geopotential model is obtained from the analysis of 17 years of SLR data approximately centered on year 2000 and has an uncertainty of 2×10^{-11} (Cheng *et al.*, 2010). It differs significantly from the EGM2008 value obtained from 4 years of GRACE data, as it is expected that tide-like aliases will affect GRACE-based C_{20} values, depending on the averaging interval used. The tide-free value of C_{20} can be obtained as described in Section 5.2.2

Plan

- La modélisation harmonique
- Les modèles globaux de champ de gravité
- GM et bas degrés
- Modélisations alternatives
- Les corrections de gravité
- Evolution des Conventions

Plan

- La modélisation harmonique
- Les modèles globaux de champ de gravité
- GM et bas degrés
- Modélisations alternatives
- Les corrections de gravité
- Evolution des Conventions

Le champ de gravité de la Terre

Toute la théorie du champ de gravité repose sur la loi de la gravitation universelle énoncée par I. Newton en 1686 :

 $F = G \frac{Mm}{r^2}$

Le point M crée en tout point de l'espace un champ dit newtonien qui dérive du potentiel :

$$U = \frac{GM}{r}$$

tel que : $\ddot{r} = \frac{\partial U}{\partial \bar{x}} = -GM\frac{\bar{r}}{r^3}$

Ce potentiel vérifie l'équation de Laplace (1785):

$$\Delta U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = 0$$

х

(M

(m)

Cas de la Terre inhomogène

Le potentiel créé en M(*x*,*y*,*z*) par l'ensemble des points de la Terre P(ξ, η, ζ) s'exprime :

$$U = \iiint_V \frac{G}{\Delta} \, dm$$

où
$$dm = \delta(\xi, \eta, \zeta) d\xi d\eta d\zeta$$

et $\Delta = PM = \sqrt{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}$

Il satisfait l'équation de Laplace en tout point extérieur au corps :

$$\Delta U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = 0$$

A l'intérieur du corps, les dérivées secondes sont liées par l'équation de Poisson :

$$\Delta U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = -4\pi G\rho \qquad (\rho : \text{densité au point considéré})$$

Modélisation du potentiel gravitationnel

Soit:
$$V = \frac{r}{\Delta}$$
 et $\rho = \frac{r'}{r}$
on a dans le triangle MOP: $\Delta^2 = r^2 - 2rr'\cos\theta + r'^2$
et donc: $V = \frac{1}{(1 - 2\rho\cos\theta + \rho^2)^{1/2}}$

V est développable en série entière de ρ , <u>convergente pour $\rho < 1$ </u>

$$V = P_0 + \rho P_1 + \rho^2 P_2 + \dots + \rho^n P_n + \dots$$

ou les P_n sont les **polynômes de Legendre** de degré *n* en $cos \theta$:

$$P_{n} = \sum_{k=0}^{n/2} (-1)^{k} \frac{(2n-2k)!}{2^{n} k! (n-k)! (n-2k)!} \cos^{n-2k} \theta$$

V est une fonction harmonique à l'extérieur du domaine (V), c'est à dire :

- elle a ses dérivées secondes continues,

- son Laplacien ΔV est nul.

$$P_{n} \text{ est un polynôme harmonique de degré } n \text{ qui vérifie :}$$

$$- 1'équation différentielle : P_{n}(x) = \frac{1}{2^{n} n!} \frac{d^{n} (x^{2} - 1)^{n}}{dx^{n}}$$

$$- \text{ la propriété d'orthogonalité : } \int_{-1}^{+1} P_{n}(x) P_{m}(x) dx = \frac{2\delta_{n,m}}{2n+1}$$

Expressions littérales jusqu'au degré 6 :

$$\begin{aligned} P_0(x) &= 1 \\ P_1(x) &= x = \cos\theta \\ P_2(x) &= (3x^2 - 1)/2 = (3\cos 2\theta + 1)/4 \\ P_3(x) &= (5x^3 - 3x)/2 = (5\cos 3\theta + 3\cos \theta)/8 \\ P_4(x) &= (35x^4 - 30x^2 + 3)/8 = (35\cos 4\theta + 20\cos 2\theta + 9)/64 \\ P_5(x) &= (63x^5 - 70x^3 + 15x)/8 = (63\cos 5\theta + 35\cos 3\theta + 30\cos \theta)/128 \\ P_6(x) &= (231x^6 - 315x^4 + 105x^2 - 5)/16 = (231\cos 6\theta + 126\cos 4\theta + 105\cos 2\theta + 50)/512 \end{aligned}$$

Les polynômes de Legendre (1783)

Equation différentielle de Legendre :	$(1-x^{2})\frac{d^{2}P_{n}}{dx^{2}}-2x\frac{dP_{n}}{dx}+n(n+1)P_{n}=0$
Enmulas de régumence (nor decré) .	$nP_n - (2n-1)xP_{n-1} + (n-1)P_{n-2} = 0$
rormules de recurrence (par degre) :	$(n+1)(P_{n+1}-xP_n)-n(xP_n-P_{n-1})=0$
Orthogonalité :	$\int_{-1}^{+1} P_n(x) P_m(x) dx = \frac{2\delta_{n,m}}{2n+1}$
Formule de Rodrigues :	$P_{n}(x) = \frac{1}{2^{n} n!} \frac{d^{n} (x^{2} - 1)^{n}}{dx^{n}}$
Dárivation .	$\left(x^2 - 1\right)\frac{dP_n}{dx} = n\left(xP_n - P_{n-1}\right)$
Derivation :	$(2n+1)(x^{2}-1)\frac{dP_{n}}{dx} = n(n+1)(P_{n+1}-P_{n-1})$
Fonction/série génératrice :	$\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n$

Passage en coordonnées sphériques

Par trigonométrie sphérique entre P(r', φ', λ') et M(r, φ, λ), on établit la relation :

$$\cos\theta = \sin\varphi\sin\varphi' + \cos\varphi\cos\varphi'\cos(\lambda - \lambda')$$

Chaque polynôme harmonique $P_n(\cos\theta)$ vérifie l'équation de Laplace qui, exprimée en coordonnées polaires, vaut:

$$r^{2} \Delta P_{n} = \frac{\partial}{\partial r} \left(r^{2} \frac{\partial P_{n}}{\partial r} \right) + \frac{1}{\cos \varphi} \frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial P_{n}}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2} P_{n}}{\partial \lambda^{2}} = 0$$

dont une solution de type $f(r)g(\varphi)h(\lambda)$ fait intervenir les polynômes de Legendre:

$$P_n(\cos\theta) = P_n(\sin\varphi)P_n(\sin\varphi') + 2\sum_{m=1}^n \frac{(n-m)!}{(n+m)!}P_{n,m}(\sin\varphi)P_{n,m}(\sin\varphi')\cos(m(\lambda-\lambda'))$$

 $P_{n,m} \cos m\lambda$ et $P_{n,m} \sin m\lambda$ sont des fonctions harmoniques sphériques de degré *n* et d'ordre *m*.

Les fonctions de Legendre $P_{n,m}$ vérifient :

- *l'équation différentielle* :
$$P_{n,m}(x) = \frac{1}{2^n n!} (1 - x^2)^{m/2} \frac{d^{n+m}(x^2 - 1)^n}{dx^{n+m}}$$

- *la propriété d'orthogonalité* : $\int_{-1}^{+1} P_{n,m}(x) P_{k,m}(x) dx = \frac{2\delta_{n,k}}{2n+1} \frac{(n+m)!}{(n-m)!}$

Expressions littérales des premiers degrés et ordres (jusqu'aux degré/ordre 4)

$$P_{1,1}(x) = (1 - x^{2})^{1/2}$$

$$P_{2,1}(x) = 3x(1 - x^{2})^{1/2}$$

$$P_{2,2}(x) = 3(1 - x^{2})$$

$$P_{3,1}(x) = \frac{15}{2}(1 - x^{2})^{1/2}\left(x^{2} - \frac{1}{5}\right)$$

$$P_{3,2}(x) = 15x(1 - x^{2})$$

$$P_{3,3}(x) = 15(1 - x^{2})^{3/2}$$

$$P_{4,1}(x) = \frac{35}{2}(1 - x^{2})^{1/2}\left(x^{3} - \frac{3}{7}x\right)$$

$$P_{4,2}(x) = \frac{105}{2}(1 - x^{2})\left(x^{2} - \frac{1}{7}\right)$$

$$P_{4,3}(x) = 105x(1 - x^{2})^{3/2}$$

$$P_{4,4}(x) = 105(1 - x^{2})^{2}$$

Valeurs aux bornes et au centre:

$$P_{n,m}(1) = 0$$

$$P_{n,m}(-1) = 0$$

$$P_{n,m}(0) = 0 \quad pour \ n - m \ impair$$

$$P_{n,m}(0) = (-1)^{(n-m)/2} \frac{(n+m)!}{2^n ((n+m)/2)!} \quad pour \ n - m \ pair$$

Les fonctions associées de Legendre (de premier type)

Equation différentielle :	$(1-x^2)\frac{d^2P_{n,m}}{dx^2} - 2(m+1)x\frac{dP_{n,m}}{dx} + (n-m)(n+m+1)P_{n,m} = 0$
Formules de récurrence	$(n-m+2)P_{n+2,m} - (2n+3)xP_{n+1,m} + (n+m+1)P_{n,m} = 0$
(par degré) :	$(n-m+2)P'_{n+2,m} - (2n+3)(xP'_{n+1,m} + P_{n+1,m}) + (n+m+1)P'_{n,m} = 0$
Formule de récurrence (par ordre) :	$P_{n,m+2} - (2m+1)\frac{x}{(1-x^2)^{1/2}}P_{n,m+1} + (n-m)(n+m+1)P_{n,m} = 0$
Formule différentielle :	$P_{n,m}(x) = (-1)^m \frac{(1-x^2)^{m/2}}{2^n n!} \frac{d^{n+m}(x^2-1)^n}{dx^{n+m}}$

Relation polynôme / fonction associée de Legendre: $P_{n,m}(x)$

$$= (1 - x^2)^{m/2} \frac{d^m}{dx^m} [P_n(x)]$$

$$= \int_{sin^2\theta} Polynôme \, d'Helmoltz$$

avec:
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n}$$
 14

Développement du potentiel terrestre en harmoniques sphériques

$$U = \frac{G}{r} \iiint_V V \, dm$$

V étant développable en harmoniques sphériques, on a :

$$V = \sum_{n=0}^{\infty} \rho^{n} P_{n} \quad \text{avec} : \rho = \frac{r'}{r} \quad \text{et} \quad P_{n}(\cos\theta) = \sum_{m=0}^{n} (2 - \delta_{m0}) \frac{(n-m)!}{(n+m)!} P_{n,m}(\sin\varphi) P_{n,m}(\sin\varphi) \cos(m(\lambda - \lambda'))$$

d'où :
$$U = \frac{G}{r} \iiint_{\nu} \sum_{n=0}^{\infty} \sum_{m=0}^{n} (2 - \delta_{m0}) \frac{(n-m)!}{(n+m)!} \left(\frac{r'}{r}\right)^{n} P_{n,m}(\sin\varphi) P_{n,m}(\sin\varphi') \cos(m(\lambda - \lambda')) dm$$

Soit en isolant la partie intégrale sous la forme de coefficients $C_{n,m}$ et $S_{n,m}$:
$$U = \frac{GM}{a_{e}} \sum_{n=0}^{\infty} \left(\frac{a_{e}}{r}\right)^{n+1} \sum_{m=0}^{n} P_{n,m}(\sin\varphi) (C_{n,m}\cos m\lambda + S_{n,m}\sin m\lambda)$$

où :
$$Ma_{e}^{n} \left\{ \sum_{n,m}^{C_{n,m}} \right\} = \iiint_{\nu} (2 - \delta_{m0}) \frac{(n-m)!}{(n+m)!} r'^{n} P_{n,m}(\sin\varphi') \left\{ \cos m\lambda' \\ \sin m\lambda' \right\} dm$$

Les terms G_{ν} (ν , μ) benet la partie la partie la fielder de la beneral de la partie result for the parties of the p

Les termes $C_{n,0} (= -J_n)$ sont les coefficients de Stokes des harmoniques zonales ; les termes $C_{n,m}$, $S_{n,m}$ sont les coefficients de Stokes des harmoniques tessérales ; les termes $C_{n,n}$, $S_{n,n}$ sont les coefficients de Stokes des harmoniques sectorielles.

Normalité et orthogonalité

Les fonctions harmoniques sphériques

Amplitudes des coefficients de Stokes normalisés (potentiel terrestre)

La troncature en degré en fonction du type d'orbite

Orbit radius / km	Example	Truncation level
7331	Starlette	90
12270	Lageos	20
26600	GPS	12

Table 6.1: Suggested truncation levels for use of EGM2008 at different orbits

Tests d'estimation de l'impact de la troncature du champ de gravité sur l'orbite

Satellite/trond	rms ature	Radial (mm)	Tangentiel (mm)	Normal (mm)	3D (mm)
GPS	12	.001	.011	.001	.012
Lageos	20	.04	.7	.07	.7
Starlette	90	.39	1.46	.21	1.46
GRACE Range Range-rate Acceleration	150	.25	.17	.06	.31 12 μm 50 nm/s .9 nm/s ²

Recommandation: donner le seuil de précision lié à la troncature

Les dérives des bas degrés

year

Modélisations et mesures du champ de gravité

Plan

- La modélisation harmonique
- Les modèles globaux de champ de gravité
- GM et bas degrés
- Modélisations alternatives
- Les corrections de gravité
- Evolution des Conventions

Missions satellitaires utilisées pour la détermination du champ de gravité

1961 – 2000 Earth tracking 100 m – 1 cm

2000 – 2010 High-low tracking 1 cm

2002 – 2017 Low-low tracking ~1 μm, ~.1 μm/s

2009 – 2013 In situ measurement <10 mE (E=10⁻⁹ s⁻²)

2018 – ... Low-low tracking 50 nm?

Puissance spectrale des modèles projetée en hauteur de géoïde

An Earth Gravitational Model to Degree 2160: EGM2008

Nikolaos K. Pavlis, Simon A. Holmes, Steve C. Kenyon, and John K. Factor

5' \times 5' Δ g Data Availability

Problèmes:

- Les sources de données sont de différents types: altimétrie sur les océans, gravimétrie sur les continents;
- Il n'y a pas de données gravimétriques terrestres sur la totalité de la surface de la Terre ou elles ne sont pas disponibles;
- La qualité des données gravimétriques et leur résolution spatiale sont disparates

Comparaison à EIGEN6-C4 (2014)

Puissance spectrale des modèles projetée en anomalie de gravité

Les résolutions:

- >1 mGal / 10 km: gravimétrie aéroportée
- >1 mGal / 5 km: altimétrie spatiale
- >1 mGal / 100 m: gravimétrie marine
- 1 µGal ponctuellement: gravimétrie terrestre

Suivi géodésique terrestre

Utilisation des données de suivi Laser, DORIS ou GNSS:

- En complément pour les bas degrés (0, 1, 2...)
 - SLR sur Lageos, Starlette, Stella...
 - ...

Differences between the low degree and order terms (< 20) of GRACE monthly gravity field solutions from four processing centers (CSR, GFZ, JPL and GRGS) gauging their "internal" errors.

- En palliatif
 - GPS GRACE-A (mono satellite)
 - SWARM
 - DORIS
 - ...

SWARM / ESA 2013 - ... 460 / 530 km, 88 deg.

Missions de type GRACE (SST)

GRACE

- Lancé de Vandenberg le 17 mars 2002
- Fin de mission en octobre 2017
- 159 mois de données sur 15,25 ans

GRACE-FO

- Lancé de Vandenberg le 22 mai 2018
- Délais de délivrance des données : 2019 (3 mois IOC, + 4 mois science phase + 2 mois Level2 production...)

GRACE-2

• Soumis au programme NASA Decadal Survey 2017-2027

No data due to accelerometer problems No data due to GRACE-B battery problems GRACE-A accelerometer data transferred to GRACE-B

Falcon 9

Le signal GRACE et ses transformations

Sensibilité du type de mesure GRACE pour la détermination du champ de gravité

Etude analytique comparative des sensibilités des dérivées successives de la mesure de distance KBR

Missions de type GOCE (Gradiométrie)

GOCE (17-3-2009 - 10-11-2013)

- Drag free at 260 km altitude
- 3 pairs of accelerometers sensitive to 10⁻¹² m s⁻² Hz^{-1/2}

No new gradiometric mission planned presently

-1105 -171 -112 -69 -33 1 35 72 114 174 1159 milliEotvos - LNOF

Dérivées secondes du potentiel gravitationnel terrestre – effet de l'ellipsoïde soustrait en repère local North-West-Up (source IGN/IPGP) 34

Sensibilité des gradients sur GOCE

Standard deviation (sigma) per coefficient C_{Im} and S_{Im} of degree *I* and order *m* (upper frames) and coefficient differences with DIR-R5 (lower frames) for the XX-only, YY-only and ZZ-only and XXYY models (right to left).

Source: Comparison of satellite-only gravity field models constructed with all and parts of the GOCE gravity gradient dataset, S. Bruinsma, Ch. Förste, S. Mulet, M.-H. Rio, O. Abrikosov, J.-Ch. Marty, Marine Geodesy (2016), DOI 10.1080/01490419.2016.1182090

Etude prospective pour 2 couples de satellites (emotion², 2016)

GFZ

ICGEM Home

Gravity Field Models

Static Models

Temporal Models

Topographic Gravity Field Models

Calculation Service

3D Visualisation

Static Models

Temporal Models

Trend & Amplitude

Spherical Harmonics

Evaluation

Spectral domain

GNSS Leveling

FAQ

Theory

References

Latest Changes

Discussion Forum

GFZ Potsdam

Other Celestial Bodies (Moon, Venus, Mars)

Table of Models

3D Visualization

Calculation Service

Login

International Centre for Global Earth Models (ICGEM)

ICGEM

Appointment of the new director:

The longtime director of the ICGEM service, Franz Barthelmes retired on December 31st 2017. We would like to acknowledge the invaluable contributions he provided to ICGEM service and GFZ family. As of January 1st 2018, E. Sinem Ince has been appointed as the new director of the ICGEM service.

ICGEM is one of five services coordinated by the International Gravity Field Service (IGFS) of the International Association of Geodesy (IAG). The other services are:

- BGI (Bureau Gravimetrique International), Toulouse, France
- ISG (International Service for the Geoid), Politecnico di Milano, Milano, Italy
- IGETS (International Geodynamics and Earth Tide Service), EOST, Strasbourg, France
- IDEMS (International Digital Elevation Model Service), ESRI, Redlands, CA, USA

Services of ICGEM

- · collecting and archiving of all existing global gravity field models
- · web interface for getting access to global gravity field models
- · web based visualization of the gravity field models their differences and their time variation
- · web based service for calculating different functionals of the gravity field models
- · web site for tutorials on spherical harmonics and the theory of the calculation service
- new service since 2016: providing a Digital Object Identifier (DOI) for the data set of the model (the coefficients)

Some ICGEM related documents

- · Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models
- Article about Global Models
- Description of the ICGEM-format
- IGFS and ICGEM in Geodesists Handbook 2016
- ICGEM-Report 2003-2007
- ICGEM-Report 2007-2011
- ICGEM-Report 2011-2015
- ICGEM-Report 2015-2017
- The ICGEM-Poster 2018
- Presentation about global models and the ICGEM
- Presentation about the ICGEM (IAG-Assembly, 2013, Potsdam)
- · Figure with the differences of some satellite-only models to a recent combination model

Please cite our service as:

icgem@gfz-potsdam.de

Nr	Model	Year	Degree	Data	References	Download	Calculate	Show	DOI
168	Tongji-Grace02k	2018	180	S(GRACE)	Chen, Q. et al, 2018	gfc zip	Calculate	Show	1
167	SGG-UGM-1	2018	2159	EGM2008, S(GOCE)	Liang, W. et al., 2018 & Xu, X. et al. (2017)	gfc zip	Calculate	Show	1
166	GOSG01S	2018	220	S(GOCE)	Xu, X. et al., 2018	gfc zip	Calculate	Show	1
165	IGGT R1	2017	240	S(GOCE)	Lu, B. et al, 2017	gfc zip	Calculate	Show	1
164	IfE GOCE05s	2017	250	S(GOCE)	Wu, H. et al, 2017	gfc zip	Calculate	Show	1
163	GO CONS GCF 2 SPW R5	2017	330	S(GOCE)	Gatti, A. et al, 2016	gfc zip	Calculate	Show	1
162	GA02012	2012	360	A, G, S(GOCE), S(GRACE)	Demianov, G. et al, 2012	gfc zip	Calculate	Show	1
161	XGM2016	2017	719	A. G. S(GOCO05s)	Pail. R. et al. 2017	afc zip	Calculate	Show	1
160	Tongji-Grace02s	2017	180	S(Grace)	Chen, Q. et al, 2016	gfc zip	Calculate	Show	1
159	NULP-02s	2017	250	S(Goce)	A.N. Marchenko et al. 2016	afc zip	Calculate	Show	1
158	HUST-Grace2016s	2016	160	S(Grace)	Zhou, H. et al. 2016	afc zip	Calculate	Show	1
157	ITU GRACE16	2016	180	S(Grace)	Akvilmaz, O. et al. 2016	afc zip	Calculate	Show	1
156	ITH GGC16	2016	280	S(Goce) S(Grace)	Akvilmaz, O. et al. 2016	afc zip	Calculate	Show	
155	FIGEN-654 (v2)	2016	300	S(Goce) S(Grace) S(Lageos)	Förste C and Bruinsma S I 2016	afc zip	Calculate	Show	4
154	GOCO05c	2016	720	(see model) A G S	Fecher T et al 2016	ofc zip	Calculate	Show	×
153	GGM05C	2015	360		Pige L et al 2016	ofc zip	Calculate	Show	~
150	CECO	2015	2100	ECM2008_S/Gecol	Gilardoni M et al 2016	gic zip	Calculate	Show	V
151	GGM05G	2015	240	S(Goce) S(Grace)	Bettadour, S. et al. 2015	ofc zip	Calculate	Show	
150	GOC005s	2015	280	(see model) S	Maver-Gürr. T. et al. 2015	afc zip	Calculate	Show	
149	CO CONS GCF 2 SPW R4	2014	280	S(Goce)	Gatti, A. et al. 2014	afc zip	Calculate	Show	
148	EIGEN-6C4	2014	2190	A, G, S(Goce), S(Grace), S(Lageos)	Förste, Christoph et al, 2014	gfc zip	Calculate	Show	1
147	11 SG-Grace2014s	2014	200	S(Grace)	Mayer-Gürr, T. et al, 2014	gfc zip	Calculate	Show	
146	ITSG-Grace2014k	2014	200	S(Grace)	Mayer-Gürr, T. et al, 2014	gfc zip	Calculate	Show	
145	GO_CONS_GCF_2_TIM_R5	2014	280	S(Goce)	Brockmann, J. M. et al, 2014	gfc zip	Calculate	Show	
144	GO_CONS_GCF_2_DIR_R5	2014	300	S(Goce), S(Grace), S(Lageos)	Bruinsma, S. L. et al, 2013	gfc zip	Calculate	Show	
143	JYY_GOCE04S	2014	230	S(Goce)	Yi, Weiyong et al, 2013	gfc zip	Calculate	Show	
142	GOGRA04S	2014	230	S(Goce), S(Grace)	Yi, Weiyong et al, 2013	gfc zip	Calculate	Show	
141	EIGEN-6S2	2014	260	S(Goce), S(Grace), S(Lageos)	Rudenko, Sergei et al, 2014	gfc zip	Calculate	Show	
140	GGM05S	2014	180	S(Grace)	Tapley, B.D. et al, 2013	gfc zip	Calculate	Show	
139	EIGEN-6C3stat	2014	1949	A, G, S(Goce), S(Grace), S(Lageos)	Förste, C. et al, 2012	gfc zip	Calculate	Show	
138	Tongji-GRACE01	2013	160	S(Grace)	Shen, Y. et al, 2013	gfc zip	Calculate	Show	
137	JYY_GOCE02S	2013	230	S(Goce)	Yi, Weiyong et al, 2013	gfc zip	Calculate	Show	
136	GOGRA02S	2013	230	S(Goce), S(Grace)	Yi, Weiyong et al, 2013	gfc zip	Calculate	Show	
135	ULux_CHAMP2013s	2013	120	S(Champ)	Weigelt, M. et al. 2013	gtc zip	Calculate	Show	
134		2013	240	S(Goce)	Schall, Judim et al. 2014	gic zip	Calculate	Show	
133		2013	250	S(Goce) S(Grace) S(Lagens)	Bruinema S L et al 2013	gic zip	Calculate	Show	
131	FIGEN-6C2	2013	1949	A G S(Goce) S(Grace) S(Lageos)	Förste, C. et al. 2012	afc zin	Calculate	Show	
130	DGM-1S	2012	250	S(Goce) S(Grace)	Farahani. H. Hashemi et al. 2013	afc zip	Calculate	Show	
129	GOC003s	2012	250	S(Goce), S(Grace)	Mayer-Gürr, T. et al. 2012	afc zip	Calculate	Show	
128	GO CONS GCF 2 DIR R3	2011	240	S(Goce), S(Grace), S(Lageos)	Bruinsma, S.L. et al, 2010	gfc zip	Calculate	Show	
127	GO_CONS_GCF_2_TIM_R3	2011	250	S(Goce)	Pail, R. et al, 2010	gfc zip	Calculate	Show	

Plan

- La modélisation harmonique
- Les modèles globaux de champ de gravité
- GM et bas degrés
- Modélisations alternatives
- Les corrections de gravité
- Evolution des Conventions

Interprétation des bas degrés

- Degré 0
 - Contraint le GM = $398600.4415 \pm .0008 \text{ km}^3 \text{ s}^{-2}$ (Ries et al., 1992)
- Degré 1
 - Contraint le mouvement du géocentre \rightarrow système de référence

- Degré 2
 - Contraint le tenseur d'inertie \rightarrow rotation de la Terre (équations d'Euler-Liouville)

$$I = \begin{pmatrix} I_{xx} I_{xy} I_{xz} \\ I_{yx} I_{yy} I_{yz} \\ I_{zx} I_{zy} I_{zz} \end{pmatrix} = \frac{1}{3} Tr(I) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + Ma_e^2 \begin{pmatrix} C_{2,0}/3 - 2C_{2,2} & -2S_{2,2} & -C_{2,1} \\ -2S_{2,2} & C_{2,0}/3 + 2C_{2,2} & -S_{2,1} \\ -C_{2,1} & -S_{2,1} & -2C_{20}/3 \end{pmatrix}$$

Expression du coefficient de degré 0

Le degré 0 agit comme facteur d'échelle de la masse conventionnelle M de la Terre:

$$C_{0,0} = \frac{1}{M} \iiint_V dm = 1$$

GM est défini par sa valeur en **Temps Coordonné Géocentrique** (TCG). Cette constante gravitationnelle géocentrique, incluant la masse de l'atmosphère, est en fait déduite de l'ajustement d'orbite des satellites Lageos-1 et -2 à partir des données de suivi laser :

$$GM = 3.986004418 \ 10^{14} \pm 8 \ 10^5 \ m^3 \ s^{-2}$$
 (IERS Conventions)

Le TCG est une échelle de temps-coordonnée (le *t* des équations) liée au système de référence spatio-temporel géocentrique. Il diffère du **Temps Terrestre** (TT), temps-coordonné lié à la réalisation du **Temps Atomique International** (TAI, appelé temps propre mesurable) et rapporté au géoïde:

TT = TAI + 32.184 s (pour assurer la continuité avec le TE)

Dans cette échelle rapporté à un temps mesurable, GM s'obtient par transformation:

$$GM_{TT} = GM_{TCG} d(TT)/d(TCG) = GM_{TCG} (1 - L_G) = 3.986004415 \ 10^{14} \ m^3 \ s^{-2}$$

C'est la valeur adoptée dans les modèles EIGEN ainsi que dans EGM2008.

Table 1.1: IERS numerical standards.

TCB-compatible value, computed from the TDB-compatible value in [5].

[†] The value for GM_{\oplus} is TCG-compatible. For a_E , g_E and R_0 the difference between TCG-compatible and TT-compatible is not relevant with respect to the uncertainty.

[‡] The values for a_E , 1/f, $J_{2\oplus}$ and g_E are "zero tide" values (see the discussion in Section 1.1 above). Values according to other conventions may be found in reference [8].

^{††} TDB-compatible value. An accepted definition for the TCB-compatible value of au is still under discussion.

Expression des coefficients de degré 1

Degré 1 :
$$C_{1,0} = \frac{1}{Ma_e} \iiint r' P_{1,0}(\sin \phi') dm = \frac{1}{Ma_e} \iiint r' \sin \phi' dm$$

 $= \frac{1}{Ma_e} \iiint z' dm = \frac{z_G}{a_e}$
 $C_{1,1} = \frac{1}{Ma_e} \iiint r' P_{1,1}(\sin \phi') \cos \lambda' dm = \frac{1}{Ma_e} \iiint r' \cos \phi' \cos \lambda' dm$
 $= \frac{1}{Ma_e} \iiint r' P_{1,1}(\sin \phi') \sin \lambda' dm = \frac{1}{Ma_e} \iiint r' \cos \phi' \sin \lambda' dm$
 $= \frac{1}{Ma_e} \iiint r' P_{1,1}(\sin \phi') \sin \lambda' dm = \frac{1}{Ma_e} \iiint r' \cos \phi' \sin \lambda' dm$
 $= \frac{1}{Ma_e} \iiint r' P_{1,1}(\sin \phi') \sin \lambda' dm = \frac{1}{Ma_e} \iiint r' \cos \phi' \sin \lambda' dm$
Le degré 1 définit le centre des masses G de la Terre tel que : $G \begin{cases} x_G = a_e C_{1,1} \\ y_G = a_e S_{1,1} \\ z_G = a_e C_{1,0} \end{cases}$

Le degré 1 varie principalement en fonction du transfert saisonnier des masses fluides superficielles. Les satellites orbitant autour du centre des masses, cette variation se répercute d'autant sur l'origine du système de référence terrestre (le centre de figure) dont l'ITRF est la réalisation.

 $C_{1.0}$

Séries temporelles du degré 1, converties en géocentre, obtenues à partir des données LAGEOS-1 and -2

Expression des coefficients de degré 2

$$C_{2,0} = \frac{1}{Ma_e^2} \iiint_r r^2 P_{2,0}(\sin \phi') dm = \frac{1}{Ma_e^2} \iiint_r r^2 \frac{(3\sin \phi'^2 - 1)}{2} dm$$

$$= \frac{1}{Ma_e^2} \iiint_r \left[z'^2 - \left(\frac{x'^2 + y'^2}{2} \right) \right] dm = \frac{(I_{xx} + I_{yy})/2 - I_{zz}}{Ma_e^2}$$

$$C_{2,1} = \frac{1}{Ma_e^2} \iiint_r \frac{1}{3} r'^2 P_{2,1}(\sin \phi') \cos \lambda' dm = \frac{1}{Ma_e^2} \iiint_r r'^2 \sin \phi' \cos \phi' \cos \lambda' dm = \frac{1}{Ma_e^2} \iiint_r x'z' dm = \frac{-I_{xz}}{Ma_e^2}$$

$$S_{2,1} = \frac{1}{Ma_e^2} \iiint_r \frac{1}{3} r'^2 P_{2,1}(\sin \phi') \sin \lambda' dm = \frac{1}{Ma_e^2} \iiint_r r'^2 \sin \phi' \cos \phi' \sin \lambda' dm = \frac{1}{Ma_e^2} \iiint_r y'z' dm = \frac{-I_{yz}}{Ma_e^2}$$

$$C_{2,2} = \frac{1}{Ma_e^2} \iiint_r \frac{1}{3} r'^2 P_{2,2}(\sin \phi') \cos 2\lambda' dm = \frac{1}{Ma_e^2} \iiint_r \frac{1}{4} r'^2 \cos^2 \phi' \cos 2\lambda' dm = \frac{1}{4Ma_e^2} \iiint_r (x'^2 - y'^2) dm = \frac{I_{yy} - I_{xx}}{4Ma_e^2}$$

$$S_{2,2} = \frac{1}{Ma_e^2} \iiint_r \frac{1}{12} r'^2 P_{2,2}(\sin \phi') \sin 2\lambda' dm = \frac{1}{Ma_e^2} \iiint_r \frac{1}{4} r'^2 \cos^2 \phi' \sin 2\lambda' dm = \frac{1}{2Ma_e^2} \iiint_r x'y' dm = \frac{-I_{xy}}{2Ma_e^2}$$

Le degré 2 conditionne le tenseur d'inertie *I* de la Terre :

$$I = \begin{pmatrix} I_{xx}I_{xy}I_{xz} \\ I_{yx}I_{yy}I_{yz} \\ I_{zx}I_{zy}I_{zz} \end{pmatrix} = \frac{1}{3}Tr(I) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + Ma_e^2 \begin{pmatrix} C_{2,0}/3 - 2C_{2,2} & -2S_{2,2} & -C_{2,1} \\ -2S_{2,2} & C_{2,0}/3 + 2C_{2,2} & -S_{2,1} \\ -C_{2,1} & -S_{2,1} & -2C_{20}/3 \end{pmatrix}$$

La trace de I: $Tr(I)=I_{xx}+I_{yy}+I_{zz}$, est invariante dans l'hypothèse de la conservation de la masse.

Séries temporelles des termes C_{21}/S_{21} à partir des

Le degré 2: rotation de la Terre et moment angulaire

Mass excitation from C21/S21

EIGEN-GRGS-RL02: mass excitation from GRACE/Lageos + models (ECMWF + MOG2D)

Plan

- La modélisation harmonique
- Les modèles globaux de champ de gravité
- GM et bas degrés
- Modélisations alternatives
- Les corrections de gravité
- Evolution des Conventions

Harmoniques ellipsoïdales

Soit l'équation de l'ellipsoïde: $\frac{x^2}{a^2} + \frac{y^2}{a^2 - h^2} + \frac{z^2}{a^2 - k^2} = 1$ avec $h^2 = a^2 - b^2$, $k^2 = a^2 - c^2$, 0 < h < kSolutions de l'équation de Lamé (solution de l'équation de Laplace en coordonnées ellipsoïdales):

• cas oblong ($\rho = a, a = b, h = 0, k^2 = a^2 - c^2$) $\begin{cases}
x = \sqrt{\rho^2 - k^2} \cos \varphi \cos \lambda \\
y = \sqrt{\rho^2 - k^2} \cos \varphi \sin \lambda \\
z = \rho \sin \varphi
\end{cases}$ $U = GM \sum_{i=1}^{\infty} \sum_{j=1}^{n} \frac{Q_{lm} (i(\rho^2 - k^2))}{\rho_{lm} (i(\rho^2 - k^2))} P_{lm} (\sin \varphi) (A_{lm} \cos m\lambda + B_{lm} \sin m\lambda)$

$$\mathcal{D} = GM \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{2 lm (\sqrt{q})}{Q_{lm} (ia^2)} P_{lm} (\sin \varphi) (A_{lm} \cos m\lambda + E)$$

• cas prolong (*ρ=b, b=c, h²=a²-b², k=h*)

$$\begin{cases} x = \rho \cos \varphi \cos \lambda \\ y = \sqrt{\rho^2 - h^2} \cos \varphi \sin \lambda \\ z = \sqrt{\rho^2 - h^2} \sin \varphi \end{cases}$$

$$U = GM \sum_{l=0}^{\infty} \sum_{m=0}^{n} \frac{Q_{lm}(\rho)}{Q_{lm}(a)} P_{lm}(\sin \varphi) (A_{lm} \cos m\lambda + B_{lm} \sin m\lambda)$$

 Q_{nm} : fonctions associées de Legendre de seconde espèce

Modélisation polyhédrique

Par transformation de l'intégrale de volume en intégrale de surface (densité p constante):

$$V = \iiint_{Volume} \frac{G}{r} dm = G \iiint_{Volume} \frac{\rho}{r} dV = \frac{G\rho}{2} \iint_{Surface} \bar{n}.\bar{r} dS$$

Polyèdre à faces triangulaires planes (densité constante):

$$V = \frac{G\rho}{2} \iint_{Surface} \bar{n}.\bar{r}dS = \frac{G\rho}{2} \sum_{i=1}^{n} \iint_{Triangle} \bar{n}.\bar{r}dS$$

Polyèdre à prismes droits (densité p_i variable):

$$V = G \iiint_{Volume} \frac{\rho}{r} dV = \frac{G}{2} \sum_{i=1}^{n} \rho_i \iint_{Prisme} \bar{n}.\bar{r} dS$$

La surface différentielle *dS* en relation avec le potentiel au point P

Balmino G., Gravitational potential harmonics from the shape of an homogeneous body,

Celestial Mechanics and Dynamical Astronomy, vol.60, pp.331-364, 1994

Ondelettes de Poisson

Des fonctions localisées spatialement et spectralement (*Holschneider et al, 2003*)

- → Intégrer au sein d'un modèle unique des observations distribuées localement, avec différentes résolutions
- → Augmenter localement la résolution d'un modèle global ou régional (zoom)
- \rightarrow Une optimisation locale du rapport signal/bruit
- \rightarrow Estimation itérative du modèle par sous-domaines
- \rightarrow Modélisation multi-échelles 4D

Approche par l'intégrale de l'énergie

Cas appliqué aux mesures GRACE de vitesse inter-satellite

Masses surfaciques (mascons)

L'accélération gravitationnelle de masses surfaciques est calculée directement par l'équation de Newton dans le repère tournant lié au corps central:

$$\ddot{r} = -G\rho \sum_{i} \frac{s_i h_i}{d_i^3} \bar{d}_i$$

où	G	: constante gravitationnelle
	ρ	: densité (ex.: 1000 kg m ⁻² pour l'eau)
	S _i	: surface du <i>i</i> ^e élément
	h_i	: hauteur due <i>i</i> ^e élément
		: vecteur du <i>i^e</i> élément au satellite S exprimé dans le repère tournant lié au
00 m 0 0	ontrol	· ·

corps central

 d_i

: distance au *i*^e élément au satellite S

Approche directe

Intégration numérique (du second ordre) de l'équation fondamentales de la dynamique en repère inertiel:

$$\bar{r} = \iint \ddot{r} dt$$
 avec $\ddot{r} = \sum_{n} (\bar{r}, \dot{\bar{r}}, p_i)$

À partir d'un jeu de conditions initiales (orbite et paramètres des modèles dynamiques et géométriques):

$$\bar{r}_0, \dot{\bar{r}}_0, p_i = \left(\bar{C}_{lm}, \bar{S}_{lm}, p_{dyn}\right)$$

Formation de la quantité calculée (*Q_{calc}*):

$$\begin{split} \rho &= \| \ \bar{r}_B - \bar{r}_A \ \| \\ \dot{\rho} &= \frac{(\bar{v}_B - \bar{v}_A) \cdot (\bar{r}_B - \bar{r}_A)}{\rho} \\ \ddot{\rho} &= \frac{(\bar{a}_B - \bar{a}_A) \cdot (\bar{r}_B - \bar{r}_A) + \| \bar{v}_B - \bar{v}_A \|^2 - \dot{\rho}^2}{\rho} \end{split}$$

Formation des résidus de mesures et ajustement des paramètres par inversion de l'équation de Taylor au premier ordre:

$$\Delta Q = Q_{obs} - \dot{Q_{calc}} = \frac{\partial Q}{\partial \bar{r_0}} \Delta \bar{r_0} + \frac{\partial Q}{\partial \dot{\bar{r_0}}} \Delta \dot{\bar{r_0}} + \sum_i \frac{\partial Q}{\partial p_i} \Delta p_i$$

Le besoin de filtrage

Filtrage par valeurs propres

Inversion de 2500 coefficients (champ 50*50)

Inversion de 2500 valeurs propres (champ 80*80)

 Filtre gaussien (produit de convolution du signal par un filtre 2D, en général de rayon 400 km pour les modèles GRACE)

Filtres DDK (filtre anisotrope - convolution par matrice de covariance synthétique à partir de la cartographie des observations inter-satellites)

rage DDK5 Iniv. Bonn)

Problème du filtrage a posteriori: « mange du signal »

Plan

- La modélisation harmonique
- EGM2008 et les modèles plus récents
- GM et bas degrés
- Modélisations alternatives
- Les corrections de gravité
- Evolution des Conventions

Les variations du champ de gravité

- les marées terrestres
- les marées océaniques
- les marées polaires terrestre et océanique
- les courants océaniques
- la pression atmosphérique
- l'hydrologie
- le rebond post-glaciaire
- la tectonique
- les tremblements de Terre

6.2.2 Treatment of the permanent tide

In the case of a 'zero tide' geopotential model, the model of tidal effects to be added should not once again contain a time independent part. One must not then use the expression (6.6) as it stands for modeling $\Delta \bar{C}_{20}$; its permanent part must first be restored. This is Step 3 of the computation, which provides $\Delta \bar{C}_{20}^{zt}$, to be used with a "zero tide" geopotential model.

$$\Delta \bar{C}_{20}^{zt} = \Delta \bar{C}_{20} - \Delta \bar{C}_{20}^{perm} \tag{6.13}$$

where $\Delta \bar{C}_{20}$ is given by Equation (6.6) and where $\Delta \bar{C}_{20}^{perm}$ is the time-independent part:

$$\Delta \bar{C}_{20}^{perm} = A_0 H_0 k_{20} = (4.4228 \times 10^{-8})(-0.31460) k_{20}. \tag{6.14}$$

In the case of EGM2008, the difference between the zero-tide and tide-free value of C_{20} is -4.1736×10^{-9} .] Assuming the same values for A_0 , H_0 and k_{20} , the tide-free value of C_{20} corresponding to Table 6.2 would be $-0.48416531 \times 10^{-3}$. The use of "zero tide" values and the subsequent removal of the effect of the permanent tide from the tide model is presented for consistency with the 18th IAG General Assembly Resolution 16.

Le potentiel de marée terrestre : théorie de Love (1909)

Dans une hypothèse de Terre élastique, le déplacement de la croûte terrestre doit être proportionnel à l'excitation.

Excitation :
$$U_P = \frac{Gm_P}{R} \sum_{l=2}^{3} \left(\frac{R}{r_P}\right)^{l+1} P_{l0} (\cos \Psi)$$

Déplacement : $u_r = \sum_{l=2}^{3} \frac{h_l}{g} \frac{U_{P_l}}{g}$, h_l : nombre de Love (sans dimension) de déformation verticale
L'incrément de potentiel externe engendré par la
déformation élastique de la Terre est proportionnel au
potentiel d'excitation. Il s'exprime au degré 2 à la
surface de la Terre:
 $\Delta U_{20} = \frac{k_2}{2} U_P(R)$
 k_2 : nombre de Love (sans dimension) de potentiel

Le potentiel de marée permanente

Par trigonométrie sphérique entre P(r_p, δ_p, α_p) et M(r, φ, λ), on établit la relation : $\cos \psi = \sin \varphi \sin \delta_p + \cos \varphi \cos \delta_p \cos (\lambda - \alpha_p)$

$$et P_{20}(\cos \psi) \text{ s'explicite:}$$

$$P_{20}(\cos \psi) = P_{20}(\sin \varphi)P_{20}(\sin \varphi_p)$$

$$+ \frac{1}{3}P_{21}(\sin \varphi)P_{21}(\sin \varphi_p)\cos(\lambda - \alpha_p)$$

$$+ \frac{1}{12}P_{22}(\sin \varphi)P_{22}(\sin \varphi_p)\cos(2(\lambda - \alpha_p))$$

$$+ \frac{3}{4}\cos^2 \varphi \cos^2 \delta_p \cos(2(\lambda - \alpha_p))$$

Dans le cas de la lune ou du soleil, la moyenne de $P_{20}(\sin \delta_p)$ s'exprime :

$$\begin{aligned} \left[\Delta U_2 \right]_{perm.} \approx \frac{3}{4} \sin^2 \varepsilon_0 - \frac{1}{2} = \frac{1}{2} \left(P_{20} (\sin \varepsilon_0) - \frac{1}{2} \right) , \quad \varepsilon_0 = 23^\circ 26^\circ 21.4^\circ, \text{ inclinaison de l'écliptique} \\ \text{D'où:} \quad \left[\Delta U_2 \right]_{perm.} = \sum_{p=L,S} \frac{Gm_p}{R} k_2 \left(\frac{R}{r_p} \right)^3 P_{20} (\cos \psi) \approx R^2 \left(\frac{Gm_L}{r_L^3} + \frac{Gm_S}{r_S^3} \right) k_2 P_{20} (\sin \psi) \left(\frac{3}{4} \sin^2 \varepsilon_0 - \frac{1}{2} \right) \\ \Rightarrow \quad \left[\Delta C_{20} \right]_{perm.} \approx \frac{R^3}{GM} \left(\frac{Gm_L}{r_L^3} + \frac{Gm_S}{r_S^3} \right) k_2 \left(\frac{3}{4} \sin^2 \varepsilon_0 - \frac{1}{2} \right) \quad \left[\frac{-.4180 \ 10^{-8}}{\sqrt{5}} \right] \end{aligned}$$

IERS Conventions

Modèle "Tide Free"

néglige tout impact de la lune et du soleil, comme si ces corps n'existaient pas. Le potentiel de marée terrestre doit contenir tous les termes, permanents (U_{p0}) et périodiques.

Modèle "Zero Tide"

Le potentiel terrestre tient compte de la déformation géométrique de marée permanente $(-h_2U_{p0})$.

Modèle "Mean Tide"

Le potentiel terrestre tient compte de la déformation + du potentiel induit de marée permanente $(-h_2U_{p0}+k_2U_{p0})$.

Figure 1.2: Treatment of observations to account for tidal effects in the geopotential (see Chapter 6).

Les modèles globaux (tels EIGEN) sont classiquement donnés en système "Tide Free", quoique la résolution 16 de l'IAG (à la 18^e Assemblée Générale, 1984) recommande le système "Zero Tide".

La déformation de marée permanente sur le géoïde

Consideration about the Earth's figure axis

Values for the C_{21} and S_{21} coefficients are included in the conventional geopotential model. The C_{21} and S_{21} coefficients describe the position of the Earth's figure axis. When averaged over many years, the figure axis should closely coincide with the observed position of the rotation pole averaged over the same time period. Any differences between the averaged positions of the mean figure and the mean rotation pole would be due to long-period fluid motions in the atmosphere, oceans, or Earth's fluid core (Wahr, 1987; 1990). At present, there is no independent evidence that such motions are important. The conventional values for $C_{21}(t)$ and $S_{21}(t)$ are intended to give a mean figure axis that corresponds to the mean pole position consistent with the terrestrial reference frame defined in Chapter [4].

This choice for C_{21} and S_{21} is realized as follows. First, to use the gravitational potential coefficients to solve for a satellite orbit, it is necessary to rotate from the Earth-fixed frame, where the coefficients are pertinent, to an inertial frame, where the satellite motion is computed. This transformation between frames should include polar motion. We assume the polar motion parameters used are relative to the IERS Reference Pole. Then the values

$$\bar{C}_{21}(t) = \sqrt{3}\bar{x}_p(t)\bar{C}_{20} - \bar{x}_p(t)\bar{C}_{22} + \bar{y}_p(t)\bar{S}_{22},
\bar{S}_{21}(t) = -\sqrt{3}\bar{y}_p(t)\bar{C}_{20} - \bar{y}_p(t)\bar{C}_{22} - \bar{x}_p(t)\bar{S}_{22},$$
(6.5)

where $\bar{x}_p(t)$ and $\bar{y}_p(t)$ (in radians) represent the IERS conventional mean pole (see Section 7.1.4), provide a mean figure axis which coincides with the mean pole consistent with the TRF defined in Chapter 4. Any recent value of \bar{C}_{26} , \bar{C}_{22} and \bar{S}_{22} is adequate for 10^{-14} accuracy in Equation (6.5), e.g. the values of the present conventional model ($-0.48416948 \times 10^{-3}$, 2.4393836×10^{-6} and $-1.4002737 \times 10^{-6}$ respectively) can be used.

The models for the low degree terms are generally consistent with the past longterm trends, but these are not strictly linear in reality. There may be decadal variations that are not captured by the models. In addition, they may not be consistent with more recent surface mass trends due to increased ice sheet melting and other results of global climate change.

http://www.igg.uni-bonn.de/apmg/fileadmin/itg-grace03.html

Le pôle moyen IERS

IERS conventions 2010: polynôme cubique sur la période 1976-2010 ($t_0 = 2000$):

 $\bar{x}_p = 55.974 \text{ mas} + (t - t_0) 1.8243 \text{ mas/yr} + (t - t_0)^2 0.18413 \text{ mas/yr}^2 + (t - t_0)^3 0.007024 \text{ mas/yr}^3$ $\bar{y}_p = 346.346 \text{ mas} + (t - t_0) 1.7896 \text{ mas/yr} - (t - t_0)^2 0.10729 \text{ mas/yr}^2 - (t - t_0)^3 0.000908 \text{ mas/yr}^3$

Complété par une extrapolation linéaire après 2010 ($t_0 = 2000$):

$$\bar{x}_p = 23.513 \text{ mas} + (t - t_0) 7.6141 \text{ mas/yr}$$

$$\bar{y}_p = 358.891 \text{ mas} - (t - t_0) 0.6287 \text{mas/yr}$$

Les modèles récents de champ de gravité contiennent des termes C_{21}/S_{21} . Toutefois, lorsque ces termes sont manquants, il est possible de les introduire géométriquement en assimilant l'axe du pôle moyen (PM) à l'axe d'inertie en Z (où ces coefficients sont nuls par définition) par rotation du potentiel de degré 2. Il apparait alors des termes C_{21}/S_{21} dans le TRF tels que:

$$\bar{C}_{21} = \sqrt{3} \ \bar{x}_p \ \bar{C}_{20} - \bar{x}_p \ \bar{C}_{22} + \bar{y}_p \ \bar{S}_{22}$$

$$\bar{S}_{21} = -\sqrt{3} \ \bar{y}_p \ \bar{C}_{20} - \bar{y}_p \ \bar{C}_{22} - \bar{x}_p \ \bar{S}_{22}$$

Remarques:

- les rotations de TRF à J2000 (référentiel du calcul d'orbite) sont globales et conformes aux Conventions (SOFA);
- les modèles variables GRACE contiennent des termes C_{21}/S_{21} ajustés, ce qui rend cette correction caduque;; -
- les coordonnées du pôle moyen sont utilisées pour calculer la déformation visco-élastique de marée polaire. 65

La correction de système de référence terrestre

Explication au premier ordre: $U_2 = \frac{GM}{r} \left(\frac{a_e}{r}\right)^2 \bar{C}_{20} \bar{P}_{20}(\sin\varphi) \text{ avec } \bar{P}_{20}(\sin\varphi) = \sqrt{5} \frac{3\sin^2\varphi - 1}{2}$

Soit en appliquant la transformation du pôle TRF au pôle moyen:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{TRF} = \begin{pmatrix} 1 & 0 & -\bar{x}_p \\ 0 & 1 & \bar{y}_p \\ \bar{x}_p & -\bar{y}_p & 1 \end{pmatrix} \begin{pmatrix} X_0 \\ Y_0 \\ Z_0 \end{pmatrix}_{PM}$$

il vient au premier ordre:

$$sin^{2}\varphi = sin^{2}\varphi_{0} + 2sin\varphi_{0}cos\varphi_{0}(\bar{x}_{p}cos\lambda_{0} - \bar{y}_{p}sin\lambda_{0})$$

et \overline{P}_{20} se développe en:

$$\bar{P}_{20}(\sin\varphi) = \bar{P}_{20}(\sin\varphi_0) + \sqrt{3}\bar{P}_{21}(\sin\varphi_0)(\bar{x}_p\cos\lambda_0 - \bar{y}_p\sin\lambda_0)$$

D'où au 1^{er} ordre, l'apparition de termes $\bar{C}_{21}/\bar{S}_{21}$ dans le TRF:

$$\bar{C}_{21} = \sqrt{3} \; \bar{x}_p \; \bar{C}_{20} \; \; ; \quad \bar{S}_{21} = -\sqrt{3} \; \bar{y}_p \; \bar{C}_{20}$$

Recommandation:

- Appliquer la correction pour les modèles dépourvus de termes (annuels) C_{21}/S_{21}

Question (relative à la marée polaire):

- Quelle définition du pôle moyen se rapproche le plus du pôle d'inertie?

- Comment introduire une réponse élastique long terme sur les écarts de pole moyen?

Valeurs du pôle moyen 2010.5 et des coefficients C21/S21 ajustés (en vert) ou transformés (en rouge)

	$\overline{x_p}$ (")	$\overline{y_p}$ (")	$\overline{C}_{21}(10^{-9})$	$\bar{S}_{21}(10^{-9})$
IERS (2010.5)	.082	.345 -	►337	1.400
EIGEN-GRGS RL03 annuel	.084	.350 🔺	346	1.418
EGM2008	.050	.341 🔺	206	1.384

Plan

- La modélisation harmonique
- EGM2008 et les modèles plus récents
- GM et bas degrés
- Modélisations alternatives
- Les corrections de gravité
- Evolution des Conventions

Evolution des recommandations

- \rightarrow La valeur conventionnelle du GM est-elle à revoir?
- \rightarrow Faut-il introduire des coefficients de degré 1?
- \rightarrow Clarifier la recommandation « tide free » versus « zero tide »
- \rightarrow Quelle variations du pôle moyen (C₂₁/S₂₁) prendre en compte?
- \rightarrow Quel(s) modèle(s) de champ de gravité statique/variable utiliser?
- → Assurer la cohérence des conventions entre les « piliers » de la géodésie !

COST-G

International **Co**mbination Service for Time-variable Gravity Field Solutions (IGFS/IAG Service proposal)

Products and Goals

COST-G provides:

- Combined gravity field solutions in SH coefficients (Level-2 products) derived from a weighted combination of individual normal equations (NEQs) generated by the different ACs,
- Spatial grids (Level-3 products) of the Combined Solutions for hydrological, oceanic and polar ice sheets applications.

COST-G performs a quality control of the combined models as well as of the individual AC contributions before combination.

Permanent components

COST-G accomplishes its objectives through the following permanent components:

- Analysis Centers: AIUB, CNES/GRGS, CSR, GFZ, IFG, JPL, LUH, TUG...
- Analysis Center Coordinator: AIUB
- Validation Center: CNES/GRGS

Cohérence entre les domaines de la géodésie spatiale

Déformations (Love)

$$u_{r} = \sum_{\lambda=2}^{3} \frac{h_{\lambda}}{g} \Delta U_{\lambda}, u_{\varphi} = \sum_{\lambda=2}^{3} \frac{\lambda_{\lambda}}{g} \frac{\partial \Delta U_{\lambda}}{\partial \varphi}, u_{\lambda} = \sum_{\lambda=2}^{3} \frac{\lambda_{\lambda}}{g\cos\varphi} \frac{\partial \Delta U_{\lambda}}{\partial \lambda}$$

$$h(\varphi, \lambda) = \sum_{l=1}^{\infty} h_{l}^{\prime} \frac{U_{l}}{g} = \frac{4\pi GR}{g} \sum_{l=1}^{\infty} \frac{h_{l}^{\prime}}{2l+1} q_{l}(\varphi, \lambda)$$
Rotation (Euler-Liouville)

$$\frac{\Delta LOD}{LOD_{rej}} = \frac{h_{\tau}}{C_{m}\Omega} - (1+k_{2}^{\prime}) \frac{2}{3C_{m}} MR^{2} \sqrt{5} \Delta \overline{C}_{20}^{mm}$$

$$p + \frac{i}{\sigma_{0}} \dot{p} = \frac{k_{0}}{k_{0} - k_{2}} \frac{h}{\Omega(C_{m} - A_{m})}$$

$$- \sqrt{\frac{5}{3}} \frac{k_{0}}{k_{0} - k_{2}} \frac{MR^{2}}{C_{m} - A_{m}} (\overline{C}_{21} + i\overline{S}_{21})^{mm}$$

$$U = \frac{GM}{a_{e}} \sum_{n=2}^{\infty} \left(\frac{a_{e}}{r}\right)^{n+1} \sum_{m=0}^{n} \overline{P}_{n,m} (\sin\varphi) (\overline{C}_{n,m}^{*} \cos m\lambda + \overline{S}_{n,m}^{*} \sin m\lambda)$$