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Where do we need gravity ?

1967 : discovery of pulsar.
=> first strong field tests

and with the beginning of Deep Space 
exploration in the 60th

Since Galileo Galilei, here…

weak field tests

and tomorrow (even already today) :

gravitational wave 
astronomy

Galactic Center



General Outline
•Some	basics	concerning	General	Relativity	

•Examples	in	Space/Ground	Geodesy	illustrating	why	we	need	Relativity	

•Relativistic	Reference	Systems	and	Alternative	to	GR…	

•How	to	describe	observables	in	GR	
•light	propagation	
•celestial	mechanics	

•What	are	the	consequences	on	the	IERS	conventions	?



- Gravitation ⇔ space-time curvature (described by a metric        )

- free-falling masses follow geodesics of this metric and ideal clocks 
measure proper time 

Basic principles of GR

1) Equivalence Principle:

- 3 facets: Universality of free fall, Local Position/Lorentz Invariance

- very well tested (10-13 with Eöt-wash experiments and Lunar Laser 
Ranging ; 10-4 with grav. redshift ; no variation of constants)1 

- more accurate measurement needed: alternative (string) theories 
predict violation smaller2 → MICROSCOPE accuracy 10-15

1 C. Will, LRR, 9, 2006 

gµ�

ds2 = gµ�dx
µdx�

2 T. Damour, CQG, 29-184001, 2012



Free Fall Experiments
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Free-fall

Fifth-force
  searches

LLR

              TESTS OF THE 
WEAK EQUIVALENCE PRINCIPLE

d�   a1 -a 2
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2010

Atom Interferometry

400 CE  Ioannes Philiponus: “…let fall from the same height
two weights of which one is many times as heavy as the
other …. the difference in time is a very small one”

1553 Giambattista Benedetti
proposed equality

1586 Simon Stevin
experiments

1589-92  Galileo Galilei
Leaning Tower of Pisa?

1670-87  Newton
pendulum experiments

1889, 1908 Baron R. von Eötvös
torsion balance experiments (10-9)

1990s UW (Eöt-Wash)  10-13

CNES Microscope Mission : 10-15



Local Position Invariance : redshift
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              TESTS OF  
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SAO-
Stanford

Fountain
Clocks

1959 : Pound & Rebka (10%)

1980 :  Gravity Probe A
Vessot (0.01%)

Launch : 1976 with Scout rocket
duration : 1h55mn
where : Wallops Island

Atomic Clock Ensemble in Space (ACES)

Goal :
improving by 35 GPA

To be launched soon



Basic principles of GR
1I) Field equations (determination of the metric):

- Einstein Equations:  
     space-time curvature (metric) ⇔ matter-energy content

Rµ� � 1

2
Rgµ� =

8�G

c4
Tµ�

- important effects for space-mission:

• dynamics ≠ from Newton (ex.: advance of the perihelion)
• proper time (measured by ideal clocks) ≠ coordinate time
• coordinate time delay for light propagation (Range/Doppler)
• light deflection (VLBI, astrometry)



Ground & space geodesy accuracy is increasing:

Navigation of interplanetary probes :

From cm to mmLLR & SLR
GALILEO

factor 80 on Grav. RedshiftGravity Probe A to ACES/Pharao

Ground & space astrometry:
from milli to micro-arcsecondGaia, Gravity

factor 10 on Doppler
Cassini Experiment, use of Ka Band
MORE Experiment on BepiColombo
JUNO Experiment 2016, JUICE towards 2030

Need to describe light propagation/dynamics more 
precisely in relativistic framework : go to 2PN theory !

Timespan and accuracy are increasing : 
• One can catch more relativistic effects 
• Better sensibility to test Relativity

More and more precision !



body Mass 
(µas)

J2 

(µas)
Sun 1.75ʹʹ -
Mercury 83 -
Venus 493 -
Earth 574 -
Mars 116 -
Jupiter 16270 240
Saturn 5780 90
Uranus 2080 -
Neptun 2533 -

Z

Y

L2 X

Y
Z

Sun E

Light	deflection	(first	order)																				Celestial	Mechanics	:	Gaia	orbit	=>	1-2	mm/s	=	aberration	of	1	μas

Relativistic	effects	in	km	over	200	days…

2d	order,	Sun	:	10	μas

-	It	is	not	any	more	possible	to	speak	about	corrections….	
-	All	modeling	must	be	natively	relativistic

Time	Metrology:	need	to	synchronize	onboard	clock	with	the	
ground	at	an	accuracy	of	1	μs	over	the	mission.	

But	we	have	periodic	differences	of	several	μs		between	the	real	
data	analysis	time	scale	and	the	Gaia	proper	time….

A first but illustrative example : Gaia



Light deflection : how much ?

body (µas) >1µas

Sun 1.75ʹʹ 180 °

Mercury 83 9 ʹ

Venus 493 4.5 °

Earth 574 125 °

Moon 26 5 °

Mars 116 25 ʹ

Jupiter 16270 90 °

Saturn 5780 17 °

Uranus 2080 71 ʹ

Neptune 2533 51 ʹ

• Monopole light deflection: distribution over the sky on 25.01.2006 at 16:45 
  equatorial coordinates



Minor bodies : 
Ganymede  35 
Titan         32 
Io               30 
Callisto   28 
Pluto           7 
Charon     4 
Titania           3 
Ceres           1 

body (muas) >1muas

Sun 1.75 106 180° 

Mercury 83 9° 

Venus 493 4.5° 

Earth 574 125° 

Moon 26 5° 

Mars 116 25° 

Jupiter 16270 90° 

Saturn 5780 17° 

Uranus 2080 71° 

Neptune 2533 51° 

Order of magnitude for  
monopole light deflection.

Light deflection : how much ?



A second but historic example : Space navigation



Doppler effect
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~109 light years

A third but funny example : VLBI
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Lunar Laser Ranging and 
Nordtvedt effect

< 10-27 for lab experiment 
= 3.6  10-6 Sun 
    10-8 Jupiter 
    4.6  10-10 Earth 
    2 10-11 Moon 

with

Post	Scriptum	:	light	propagation	between	Earth	and	Moon…	
																												Shapiro	delay	=	8	meters



Space geodesy and relativity

Several techniques used

Understand internal dynamics of the 
Earth

Determine gravity field

Good positioning

Lense-Thirring Effect detected (1% level )by
Ciufolini & Pavlis on LAGEOS, Nature 2004

PS : Schwarzchild radius of the Earth = 9mm



Relativistic Reference  
Systems 

light propagation

Realization of 
reference frame

Observation 
data

Relativistic 
Celestial Mechanics 

Definition of 
observables

Model of 
observations

Testing 
fundamental 

physics

[Klioner	2003,	CLPL	2008]

How works Fundamental Relativistic Astronomy



• First	attempt	:	IAU	1976	
• IAU	2000:	

– Fully	relativistic	(General	Relativity,	not	PPN)	
– BCRS:	time	scale	TCB	
– GCRS:	time	scale	TCG	
– Time	transformation	between	TCG	&	TCB	

• IAU	2006:	redefinition	of	time	scale	TDB

IAU Reference Systems and relativity



Reference systems theory
• In relativistic astronomy the 

• BCRS (Barycentric Celestial Reference System) 
• GCRS (Geocentric Celestial Reference System) 
• Local reference system of an observer 

   play an important role. 

• All these reference systems are defined by  
  the form of the corresponding metric tensor.

BCRS

GCRS

Local RS 
of an observer

Bini,	2003	
Klioner,	2004



Barycentric Celestial Reference System
The BCRS is a particular reference system in the curved space-time  
       of the Solar system

• One can use any 

• but one should fix one : 

ICRF by VLBI
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Ephemeride Astrometry



Tests of the gravitational dynamics
• How to test the form of the metric/the Einstein field equations ? Two 

frameworks widely used so far:

- powerful phenomenology making an interface between 
theoretical development and experiments

- metric parametrized by 10 dimensionless coefficients

- 𝛾 and 𝛽 whose values are1 in GR

1) Parametrized Post-Newtonian Formalism1

1I) Fifth force formalism2

1 C. Will, LRR, 9, 2006 
  “Theory and Experiment in Grav. Physics”, C. Will, 1993

ds2 = (1 + 2⇤N + 2�⇤2
N + . . . )dt2 � (1� 2⇥⇤N + . . . )d⌅x2

- modification of Newton potential of the form of a Yukawa potential

⇥(r) =
GM

c2r

⇣
1 + �e�r/�

⌘

2 E.G. Adelberger, Progress in Part. and Nucl. Phys., 62/102, 2009 
  “The Search for Non-Newtonian gravity”, E. Fischbach, C. Talmadge, 1998



Parameter
What it measures, relative to 

general relativity Value in GR

Value in 
scalar 
tensor 
theory

Value in semi-
conservative theories

γ 
How much space curvature 
produced by unit mass? 1 (1+ω)/

(2+ω)
γ

β How “nonlinear’’ is gravity? 1 1 + Λ β

ξ Preferred-location effects? 0 0 ξ

α1
Preferred-frame effects?

0 0 α1
α2 0 0 α2
α3 0 0 0

ζ1

Is momentum conserved?

0 0 0

ζ2 0 0 0

ζ3 0 0 0

ζ4 0 0 0

PPN parameters and their significance



Light propagation is crucial in the

1) Range observable

modeling of Sol. Sys. observations

• Depends on the difference in 
coord. time (amongst other 
parameters)

tB � tA

Emitter
worldline

Transmitter
worldline

OA
(⌧A, ⌫A)

OB
(⌧B , ⌫B)

• Difference in proper time

Range = c(⌧B � ⌧A)



Light propagation is crucial in the

2) Doppler observable

modeling of Sol. Sys. observations

D =
⌫B
⌫A

• Ratio of proper frequency =

✓
d⌧

dt

◆

A

✓
d⌧

dt

◆�1

B

kB0
kA0

1 + �i
B k̂

B
i

1 + �i
Ak̂

A
i

Wave vector kµB

Wave vector kµA

Emitter
worldline

Receiver
worldline

OA
(ta, ⌫A)

(tB , ⌫B)

OB

• Wave vector at emission 
and reception needed

�i = vi/cwith and

k̂i =
ki
k0



Light propagation is crucial in the
modeling of Sol. Sys. observations

3) Astrometric observables

Wave vector kµB

Emitter
worldline

Receiver
worldline

OA

OB

Eµ
h↵i

Local Ref. Syst.
or tetrad

Direction of observation of the light ray in a local reference system (or tetrad)

nhii = �
E0

hii + Ej
hiik̂

B
j

E0
h0i + Ej

h0ik̂
B
j

Wave vector at reception needed only

B. Astrometric observables

The goal of astrometry is to determine the position of
celestial bodies from angular observations. We focus on
two main approaches. First, we consider the modeling of
the direction of incidence of a light ray in a given reference
frame, which gives an absolute positioning of the studied
object on a celestial sphere. Second, we consider the case of
the angular separation of two light sources.
One way to get a covariant definition of the absolute

positioning of a light source is to use the tetrad formalism
[36–39] thus giving the direction of observation of an
incoming light ray in a tetrad E comoving with the
observer OB (see Fig. 1). Let us note Eμ

hαi, the components
of this tetrad, where hαi corresponds to the tetrad index
and μ is a normal tensor index that can be lowered and
raised by use of the metric. The tetrad is assumed to be
orthonormal so that

gμνE
μ
hαiE

ν
hβi ¼ ηhαihβi: (15)

Vector Eν
h0i is chosen unit and timelike, and consequently

Eν
hii are unit and spacelike. The components of the tetrad

allow us to transform the coordinates of the wave vector
from the global coordinate frame to the tetrad frame,

khαi ¼ Eμ
hαikμ; (16)

where kμ are the coordinates of the wave vector in the
global frame (represented on Fig. 1) while khαi are
the coordinates of the same vector in the tetrad frame.
The incident direction of the light ray in the tetrad
frame (which is a relativistic observable) is given by the
normalization

nhii ¼ khiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δjkkhjikhki

q ¼ khii

kh0i
¼ − khii

kh0i
; (17)

where we used the properties of the null-vector khii and the
fact that the metric tensor has a Minkowskian form in the
tetrad frame. Using the transformation law (16) into
Eq. (17), one gets

nhii ¼ −
E0
hiik0 þ Ej

hiikj

E0
h0ik0 þ Ej

h0ikj
¼ −

E0
hii þ Ej

hiik̂j

E0
h0i þ Ej

h0ik̂j
; (18)

where k̂j are the deflection functions at OB defined in
(10b). This expression is consistent with the one derived in
[40]. Using the relation (10b) one can then express the
incoming direction of the light ray in terms of the reception
delay function and its derivatives [41,42] as

nhii ¼ −
E0
hiið1 − 1

c
∂Δr
∂tB Þ − Ej

hiiN
j − Ej

hii
∂Δr

∂xjB
E0
h0ið1 − 1

c
∂Δr
∂tB Þ − Ej

h0iN
j − Ej

h0i
∂Δr

∂xjB
; (19)

which is an exact formula.

Let us now examine the second kind of astrometric
observations, namely the modeling of angular distance
between two celestial bodies. This observable can also be
computed within the TTF formalism. We assume that
two different light sources OA and OA0 are emitting a
light ray Γ and Γ0, respectively. These light rays are
received simultaneously by OB at coordinates ðtB;xBÞ.
We denote by k and k0 the wave vector of Γ and Γ0 at OB,
respectively. Using expression (10b), we construct the ratio
ðk̂jÞB corresponding to Γ and ðk̂j0ÞB describing Γ0, which
require an expression for the derivatives of the TTF whose
expression up to the 2PM order will be given in Sec. V.
It is straightforward to show that the angular distance ϕ
between OA and OA0 , as observed by a moving observer
OB, can be written as [43]

sin2
ϕ
2
¼−1

4

"ðg00þ2g0kβkþgklβkβlÞgijðk̂0i− k̂iÞðk̂0j− k̂jÞ
ð1 þβm k̂m Þð1 þβlk̂l

0Þ

#

B

;

(20)

where βiB ¼ ðdxi=cdtÞB is the coordinate velocity of OB at
coordinates ðtB;xBÞ.

V. POST-MINKOWSKIAN EXPANSION
OF THE TIME TRANSFER FUNCTION

AND ITS DERIVATIVES

In Sec. IV, we have presented a method to compute
Doppler and astrometric observables in an exact form
depending explicitly on the expression of the TTF and
its derivatives. In this section, we present a way to derive
these quantities up to 2PM order as integrals of some
functions of the space-time metric taken along a straight
line. In the weak field approximation, the expression of T r
as a formal PM series has been derived by [23] and can be
written in ascending powers of G as

T rðxA; tB;xBÞ ¼
RAB

c
þ 1

c

X∞

n¼1

ΔðnÞ
r ðxA; tB;xBÞ; (21)

whereΔðnÞ
r is of the orderOðGnÞ. The goal of this section is

then to derive analytical formulas for the delay functions
Δð1 Þ

r , Δð2Þ
r and their derivatives [44] up to 2PM order.

A. Notations and variables used

In the following, we provide some useful notations used
throughout this paper. First of all, the Minkowskian path
between the emitter and the receiver (which is a straight
line) is parametrized by λ (whose values are between 0 and
1) and is given by

z0ðλÞ ¼ ctB − λRAB (22a)

zðλÞ ¼ xB − λRAB ¼ xBð1 − λÞ þ λxA: (22b)

RELATIVISTIC FORMULATION OF COORDINATE LIGHT … PHYSICAL REVIEW D 89, 064045 (2014)

064045-5

4) Differential astrometric observables

Angle between 2 incoming light rays



How to determine the light propagation ?
• At the geometric optics approximation: photons follow null 

geodesics
dkµ

d�
+ �µ

↵�k
↵k� = 0 kµkµ = 0

kµ =
dxµ

d�
with                   the tangent vector

Wave vector kµB

Wave vector kµA

Emitter
worldline
xA(t)

Receiver
worldline

OA
(tA,xA)

(tB ,xB)

OB

But the real life :

a Boundary Value Problem

an Initial Value Problem



• Analytical solutions for weak gravitational field:  
   - 1 pM Schwarzschild metric  
   - moving monopoles at 1pM order 
   - static extended bodies with multipolar expansion at 1pM  
 
  - 2 pM Schwarzschild metric

see E. Shapiro, PRL 13, 26, 789, 1964

see S. Kopeikin, G. Schäffer, PRD 60, 124002, 1999
      S. Klioner, A & A, 404, 783, 2003

see S. Kopeikin, J. of Math. Phys., 38, 2587
       S. Zschocke, PRD 92, 063015, 2015

see G. Richter, R. Matzner, PRD 28, 3007, 1983
      S. Klioner, S. Zschocke, CQG 27, 075015, 2010

• Full numerical integration of the null geodesic eqs. with a shooting 
method see A. San Miguel, Gen. Rel. Grav. 39, 2025, 2007

Methods to solve the null geodesic eqs.

see for example N. Ashby, B. Bertotti, CQG 27, 145013, 2010

• Use of the eikonal equation:  
   - perturbative solution for spherically symmetric space-time

       A. Cadez, U. Kostic, PRD 72, 104024, 2005
                         A. Cadez, et al, New Astr. 3, 647, 1998

see for example: de Jans, Mem. de l’Ac. Roy. de Bel., 1922
                        B. Carter, Com. in Math. Phys. 10, 280, 1968

• Exact analytical solution for some metrics: Schwarzschild and Kerr (solution with Jacobian/
Weierstrass elliptic functions)



… and the Time Transfer Functions
see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• The TTF is solution of an eikonal equation well adapted to a 
perturbative expansion

• The derivatives of the TTF are of crucial interest since

k̂Ai = c
@Tr
@xi

A
k̂Bi = �c

@Tr
@xi

B


1� @Tr

@tB

��1 kB0
kA0

= 1� @Tr
@tB

Range, Doppler, astrometric observables can be 
written in terms of the TTF and its derivatives

• The Time Transfer Functions - TTF - are defined by

tB � tA = Tr(xA, tB ,xB) tB � tA = Te(tA,xA,xB)



Synge’s World Function as TTF progenitor 
see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

Suppose the existence of two event-points xA 
and xB on a manifold. We assume that they are 
located in a convex neighbourhood in such a 
way that they are connected by a unique 
geodesic.

see De Felice & Clarke
Cambridge Univ. Press

One can define a Synge’s World Function 
between xA and xB (Ruse 1931, Synge 1931, 1964)

⌦ (xA, xB) =
✏AB

2

Z 1

0
gµ⌫(x

↵(�))
dxµ

d�

dx⌫

d�
d� ,

where    is an affine parameter, � ✏AB = �1, 0, 1

Very difficult to determine it… Schwarzschild (Buchdhal 1979). 
But an iterative Post-Minkowskian expansion has been found



see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

World Function property 1: Hamilton-Jacobi equations

1

2
g↵�(xA)

@⌦

@x↵
A

(xA, xB)
@⌦

@x�
A

(xA, xB) = ⌦(xA, xB) ,

1

2
g↵�(xB)

@⌦

@x↵
B

(xA, xB)
@⌦

@x�
B

(xA, xB) = ⌦(xA, xB) .

World Function property 1II: particular case of light rays

✏AB = 0 , ⌦ (xA, xB) = 0

Synge’s World Function as TTF progenitor 

World Function property 1I: Tangent vectors at xA and xB

✓
gµ⌫

dx⌫

d�

◆

A

= � @⌦

@xµ
A

(xA, xB) ,

✓
gµ⌫

dx⌫

d�

◆

B

=
@⌦

@xµ
B

(xA, xB) .



see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

Let us introduce the emission TTF as follows
⌦
�
x0
A,xA, x

0
A + cTe(tA,xA,xB),xB

�
⌘ 0

@⌦

@x0
A

(xA, xB) +
@⌦

@x0
B

(xA, xB)


1 +

@Te
@tA

(tA,xA,xB)

�
= 0 ,

@⌦

@xi
A

(xA, xB) + c
@⌦

@x0
B

(xA, xB)
@Te
@xi

A

(tA,xA,xB) = 0 ,

c
@⌦

@x0
B

(xA, xB)
@Te
@xi

B

(tA,xA,xB) +
@⌦

@xi
B

(xA, xB) = 0 ,

If we differentiate with respect to     ,      and   x0
A xi

A xi
B

Same reasoning on reception TTF
⌦
�
x0
B � cTr(tB ,xA,xB),xA, x

0
B ,xB

�
⌘ 0 .

Synge’s World Function as TTF progenitor 



see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

But how to calculate a TTF ?

II.    Realize that [gµ⌫kµk⌫ ]xA/xB
⌘ 0 , so (2008) 

I. First calculate the world function, then apply                 is equal to 0 and use a
      Lagrange inversion (2004)

⌦ (xA, xB)

) g00(x0
B � cTr,xA) + 2c g0i(x0

B � cTr,xA)
@Tr
@xi

A

+ c2 gij(x0
B � cTr,xA)

@Tr
@xi

A

@Tr
@xj

A

= 0

g00(x0
A + cTe,xB)� 2c g0i(x0

A + cTe,xB)
@Te
@xi

B

+ c2 gij(x0
A + cTe,xB)

@Te
@xi

B

@Te
@xj

B

= 0.

Fundamental properties of TTF’s

It leads to the fundamental theorem for TTF
✓
ki
k0

◆

B

= �c
@Te
@xi

B

= �c
@Tr
@xi

B


1� @Tr

@tB

��1

,

✓
ki
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◆

A

= c
@Te
@xi

A


1 +

@Te
@tA

��1

= c
@Tr
@xi

A

,

(k0)B
(k0)A

=


1 +

@Te
@tA

��1

= 1� @Tr
@tB

.

TTF is a dedicated World Function to light ray. 
General Post-Minkowskian expansions are possible 



Post-Minkowskian expansion of the TTF

• A pM expansion of the TTF:

see P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• Computation with an iterative procedure involving integrations over 
a straight line between the emitter and the spatial position of the 
receiver !

• Main advantages:

- analytical computations relatively easy

- very well adapted to numerical evaluation

• Example at 1 pM:

with            the straight Mink. null path between em. and rec.z↵(�)
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Analytical results in Schwarzschild space-time

• A pM expansion of the TTF:

and the corresponding derivatives have been computed up to the 3rd 
pM order

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014
      P. Teyssandier, 2014, arXiv: 1407.4361

• A “simplified” iterative method has been developed for static 
spherically symmetric geometry
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Analytical results in Schwarzschild space-time

• A pM expansion of the TTF:

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014
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see E. Shapiro, PRL 13, 26, 789, 1964
What is recommended by IERS !

see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
     S. Klioner, S. Zschocke, CQG 27, 075015, 2010
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• Ex. with light deflection for Sun grazing rays: AGP space mission (old 
GAME). Expected accuracy: 𝜇as 
⇒ 3pM term needed

see A. Hees, S. Bertone, C. Le Poncin-Lafitte, PRD 89, 064045, 2014
      P. Teyssandier, B. Linet, proceedings of JSR 2013, arXiv:1312.3510
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Is it necessary to go to the 3rd order?
• In a conjunction geometry, at each order n, there are enhanced 

terms proportional to           (1 + �)n



Analytical result around axisymmetric bodies
• Influence of all the multipole moments Jn from the grav. potential

• Influence of Jupiter J2 on the JUNO Doppler  (1𝜇m/s accuracy) and 
for GAIA (10 𝜇as acc.)

see C. Le Poncin-Lafitte, P. Teyssandier, PRD 77, 044029, 2008 for a computation with the TTF
or S. Kopeikin, J. of Math. Physics 38, 2587, 1997 for another approach
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• terms important for the data analysis for these missions
see Hees, Bertone, Le Poncin-Lafitte, PRD 90, 084020, 2014



What happens if the body is moving ?

• At first pM order, the TTF for uniformly moving bodies can easily be 
derived from the TTF generated by a static body

• All the analytical results computed for a static source can be 
extended in the case of a uniformly moving source

�(xA, tB ,xB) = �(1�NAB .�)�̃(RA + ��RAB ,RB)

� = v/c, � = (1� �2)�1/2

static TTFTTF in the 
moving case

with

RXand depends on xX , �

see Hees, Bertone, Le Poncin-Lafitte, PRD 90, 084020, 2014



Ex.: motion of Jupiter
• Influence of Jupiter velocity on the JUNO Doppler  (1𝜇m/s 

accuracy) and for GAIA (10 𝜇as acc.)

GAIA/VLBI

• depend highly on the orbit geometry: conjunction and 
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• In particular: should be reassessed for JUICE orbit
see Hees, Bertone, Le Poncin-Lafitte, PRD 90, 084020, 2014



Relativistic Celestial mechanics
• Objectives	:	to	understand	the	motion	of	deflecting	bodies	==	planets	!	
• Need	to	construct	ephemerides	fully	consistent	to	GR

At	least,	EIH	equations	of	motion

conservation	laws



Towards 4D ephemerides

Comparison 
between the 
new and old 
TT-TDB 
relation

Change ??

A priori 
TDB-TT
relation

Build a 
new 

relation 
TT-TDB

Build the new 
ephemeride

Data from
TT to TDB

4D 
ephemeride

   See Fienga et al. A&A 2008

The	main	problem	is	to	distribute	position/velocity	but	also	Time	scale	transformation	between	TT	and	TDB

The	same	problem	with	natural	satellites	ephemerides	but	in	addition	tidal	effect	as	to	be	taken	in	to	account.	



PPN formalism and Sun J2 : Gaia illustration

• various	asteroids	orbital	parameters	help	to	decorrelate	
• sensitivity:	

• correlation	~	0.4	
• complementary	to	planetary	ephemerides:	different	analysis,	not	the	same	

systematics	BUT	:	
• Interesting:	combined	fit	Gaia	+	planets

INPOP results from A. Fienga et al, Cel. Mech. Dyn. Astro. 2015

• highly	correlated	parameters:	secular	effect	on	orbital	dynamics



Lense-Thirring effect due to the Sun and PPN

• Asteroids can decorrelate but Gaia not powerful enough

• Relativistic frame dragging effect produced by the rotation of a body 
(due to the Spin S)

• impossible to estimate the Sun Lense-Thirring with  planetary 
ephemerides: completely correlated with J2 see W. Folkner et al, IPN, 2014

• But… not including the LT in the modeling leads to bias:

- 10-8 on the J2 (i.e. 10% of its value)

- 5x10-5 on the β PPN 

�S

S
⇠ 6.5 [1.7 for 10yr]

• Combination with radar observations to be considered

Le Poncin-Lafitte, 2018, submitted PRD

Must	be	included	NOW	in	planetary	ephemerides….



Conclusions : consequences on Conventions
•Last	decade,	huge	activity	on	light	propagation	

• taking	into	account	Mass	Multipole	at	1PN	approximation	
• considering	motion	of	deflecting	body	at	2/3	PN	approximation		
• All	these	funny	things	are	not	in	IERS	conventions	

•Ephemerides	4D	:	
• at	1PN	approximation	:	Ok	for	the	moment.	
• But	testing	GR	:	please,	TAKE	CARE	and	ASK	to	relativistic	people	before	the	disaster	!	

•Need	to	rewrite	in	a	more	compact,	modern	and	easy-use	the	relativistic	equations	

•Local	Relativistic	Reference	system	for	other	planets	may	be	needed,	not	crucial	at	
present.	But	:	
• Relativistic	Reference	Systems	and	Alternative	to	GR.	At	1PN,	close	to	touch	the	limit.	Need	to	
consider	seriously	Mass/Spin	multipole	moments	in	Alternative	Theory	

• Light	at	2PN	needed	==	Reference	System	at	2PN	to	be	consistent.			


