Introduction to the VLBI technique

P. Charlot

Laboratoire d'Astrophysique de Bordeaux

université BORDEAUX

- VLBI instrumentation
- Correlation and post-processing
- VLBI networks and observations
- Data analysis
- The future system: VGOS

3

Parabolic reflector antenna

location on the sky.

Credit: B. Petrachenko

Signal chain

Credit: B. Petrachenko

Correlation

JIVE hardware correlator (as originally in 1997, with magnetic tapes)

VLBA hardware correlator (1992-2009)

JIVE correlator in 2008 (after replacement of tapes by disks)

DIFX software correlator (> 2009)

Ecole d'été du GRGS, Oléron, 3-7 septembre 2018

- Correlator model is good but not perfect
- Antenna models and locations, source positions are typically very good... but atmosphere is time-variable and impredictable
- GPS clock information has significant errors at the level of accuracy

Fringe-fitting removes remaining non-random signatures by incremental changes to the correlator parameters

Concept of fringe fitting

Correlator produces a 2-D complex array of visibilities

Credit: R. Cappallo

Ecole d'été du GRGS, Oléron, 3-7 septembre 2018

Extracted parameters

- For astronomy
 - ⊳ρ amplitude
 - ≻ Φ phase
- For geodesy

> Group delay $\tau_g = \partial \Phi / \partial \omega$: variation of phase with frequency

> Delay rate $\tau_g = \partial \Phi / \partial t$: rate of change of τ_g , derived from the variation of phase with time

Astrophysical VLBI

Cartographie d'objets célestes avec une résolution angulaire de 0.001"

Images de sources ICRF tirées de la base BVID (Bordeaux VLBI Image Database)

Atelier VLBI du GRGS - Bordeaux - 13-15 mars 2017

10

VLBI astrometry and geodesy

11

GR

VLBI observing networks

Very Long Baseline Array (VLBA)

Image by Paul Boven (boven@live.eu). Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visibleearth.nasa.gov).

Ecole d'été du GRGS, Oléron, 3-7 septembre 2018

A typical geodetic-type session:

- Observes at S/X band (2 GHz / 8 GHz)
- Has a duration of 24 hours
- Includes 8-10 radiotelescopes spread over different continents
- targets 50-100 extragalactic sources in various part of the sky

- Observables: $\tau = \partial \Phi / \partial \omega$, $\tau = \Phi / \varpi$
- τ can be measured to a precision of the order of 10 ps (1 mas = 3 cm ~ 100 ps)
- Modeling:

$$\tau = \tau_g + \tau_{inst} + \tau_{trop} + \tau_{ion} + \dots$$

 τ_{g} = geometric delay τ_{trop} = tropospheric delay τ_{inst} = instrumental delay τ_{ion} = ionospheric delay

Geometric delay

4

Credit: NASA/GSFC

 τ_{g} max = 0.02 s

•
$$\tau_g = -(1/c) \mathbf{k} \cdot \mathbf{B} [...]$$

 Relativistic effects at the level of 10⁻⁸ s

•
$$\overrightarrow{B}_{c\acute{e}l} = Q (\overrightarrow{B}_{ter} + \overrightarrow{\Delta B}_{ter})$$

•
$$\Delta B_{ter}$$
 depends on:

- Tectonic motions
- Terrestrial tides
- > Oceanic tides
- > atmospheric loading

> …

- Two terms:
 - Delay caused by the difference between the clocks of the two antennas

$$\tau_{hor} = \tau_{hor2} - \tau_{hor1}$$

Delay caused by propagation in the cables and electronics at each antenna.

$$\tau_{\text{prop}} = \tau_{\text{prop2}} - \tau_{\text{prop1}}$$

In practice τ_{inst}=τ_{hor} + τ_{prop} is modeled by a linear or quadratic function where the coefficients are estimated

Two components

- \blacktriangleright Dry component \rightarrow can be known to some level from meteo data
- \succ Wet component ightarrow difficult to model and very variable
- Modeling
 - For each station i : $\tau_{trop i} = \tau_{trpz i} R (H_i)$ $\tau_{trpz i} = zenith tropospheric delay$ $R = mapping function (H_i = elevation angle)$
 - > Differential effect : $T_{trop} = T_{trop2} T_{trop1}$
- In practice: $\tau_{trpz i}$ are estimated

Ionospheric delay

- Depends on the electronic content
- Diurnal cycle
- Proportionnal to $1/v^2$
- Differential effect
 - $\tau_{\text{ion}} \!=\! \tau_{\text{ion2}} \!-\! \tau_{\text{ion1}}$

➔ In practice, the ionospheric delay is eliminated by combining the S band delay (2.3 GHz) and the X band delay (8.4 GHz).

VGOS

Scientific motivation

Reach 1 mm for geodetic positions

Credit: GGOS

Credit: Silver Spoon (Wikimedia Commons)

Credit: J. Verheijen

Credit: GGOS

Ecole d'été du GRGS, Oléron, 3-7 septembre 2018

. . .

. . .

21

Motivations techniques

Constat vers ~2005

- Systèmes VLBI géodésiques/astrométriques vieillissants
 - Antennes anciennes et lentes (vitesse de déplacement)
 - Electronique ancienne
 - Problèmes d'interférences radio
 - Coût de fonctionnement élevé
- Nouvelles technologies disponibles
 - > Antennes à moindre coût
 - Systèmes d'acquisition large bande (2-15 GHz)
 - Numérisation des signaux à haute vitesse
 - Disques de grande capacité et transfert possible par fibre optique

23

VGOS: the antennas

Azimuth

- range: -270°..+270°
- velocity: 12 deg/s
- acceleration: 3 deg/s²
- 180° turn ≈ 19s

Elevation

- range: 0°..90° (180°)
- velocity: 6 deg/s
- acceleration: 3 deg/s²
- 90° turn ≈ **17s**

Credit: H. Hase

24

VGOS: observing mode

• Current mode

- ➢ S band + X band
- ≻ Group delay
- Combination of X and S delay to eliminate ionosphere

• VGOS mode

- > 4 bands of 1 GHz between 2 and 14 GHz
- Phase connection over the entire bandwidth
- Increase in the temporal resolution and of the delay precision

Where are we?

New VGOS radio telescopes for IVS

GRG

25

- operational
- under construction
- funded
- proposal submitted
- planning phase
- planning phase upgrade

based on available information October 2016

First VGOS antenna type

Built by Vertex

Twin telescopes Wettzell (Germany)

Badary (Russia)

26

Ecole d'été du GRGS, Oléron, 3-7 septembre 2018

Second antenna type

Built by MT-Mechatronics

Yebes (Espagne)

Ecole d'été du GRGS, Oléron, 3-7 septembre 2018

Twin telescopes Onsala (Sweden)

Twin telescopes NyAlesund (Spitzberg) P. Charlot

Third antenna type...

Built by Patriot/Cobham

Warkworth (New Zealand)

Réseau Auscope (Australia)

GGAO (USA)

Ecole d'été du GRGS, Oléron, 3-7 septembre 2018

First measurement in VGOS mode

4 bands of width 0.5 GHz centered on 3.3, 5.5, 6.6 and 10.5 GHz

30

Intercontinental observations

- Test sessions with Kokee (Hawai), GGAO and Westford
- Other test session including also Ishioka, Wettzell and Yebes
- Sessions between Hobart et Ishioka

First trans-Pacific fringes 09/08/2016

A VGOS antenna in Tahiti?

Credit: R. Biancale

Ecole d'été du GRGS, Oléron, 3-7 septembre 2018

31