Agenda Journées GINS-DYNAMO 2019

Observatoire Midi-Pyrenées – Salle Lyot – 11 et 12 Juin 2019

Mardi 11 Juin 2019

14h00 Accueil – café

14h15 Évolutions de GINS depuis Juin 2018 (version 18.1)

Evolutions algo et nouvelles fonctionnalités dans GINS 19.1

M. Gupta: exe_ppp evolutions

J.P Boy: "Installation de GINS-PC en local"

A. Santamaria: l'outil SARI

Mercredi 12 Juin 2019

9h15 Accueil - café

9h30 - 16h30

JC Marty: études en cours en planétaire

M.J. Peters: ": Contraindre la structure interne de Mars avec GINS".

M. A. Sammuneh: Mean Albedo Model of the Earth: Estimation and Validation from GRACE

J.Y Richard: "Nouvelle série opérationnelle de paramètres d'orientation de la Terre du centre de produit EOP de l'IERS, obtenue par combinaison d'équations normales GNSS et VLBI«

C. Chupin: Niveau des eaux littorales cartographié par drone marin - Mise en place d'une chaîne de traitement GNSS avec GINS

J.P Boy: "Analyse préliminaire des déplacements verticaux en Antarctique et comparaison avec quelques modèles de charge" Ali Sammuneh Mean Albedo Model of the Earth: Estimation and Validation from the GRACE Mission Satellites.

S Loyer: Fixation des ambiguïtés entières Galileo

A. Baños: Comparaison du positionnement précis GPS/GALILEO

F.Perosanz: variations sur GNSS

•••

BBQ vers 12h30

16h30 Conclusions et perspectives

LE LOGICIEL GINS Version 19.1

GINS 19.1: Fichiers d'environnement (1)

	· · · · · · · · · · · · · · · · · · ·	
gravity	potentiel/eigen_6s ou potentiel/nominal	
ocean_tides	marées/fes2014_100_100_ell+Om1+Om2C20+Msq+Sa-S1 ou marees/nominal fes2014c	
atmospheric_pressure	presatm/defaut presatm3d_tugo_3h/defaut (dispo 1980 -> now)	
atmospheric_tides	marees_atm/ray_ponte_10 ou maree_atm/nominal	
ocean_pole_tide	maree_polaire/desai2002 ou maree_polaire/nominal	
albedo_ir	albedo/grilles_9.0/defaut ou albedo/grilles_4.5/defaut moyenne_2000_2003_9.0 moyenne_2000_2003_4.5	
station_coordinates	itrf2014 ou nominal	
station_data_corrections	stations/problemes/pbstat_v2	
ocean_tide_loading	charge/ocean/load_fes2014_itrf2014.cf ou nominal	
ocean_pole_tide_loading	maree_polaire/loading/opoleloadcoefcmcor.txt ou nominal	
earth_orientation_parameters	pole/POLE_NRO_0h.dat pole/nominal_NRO /eop97c04_nro_itrf2014g	
planet_ephemerides	lunisolaires/de430bdl.ad ou lunisolaires/nominal de438	

Fichiers pôle utilisables

	nom	Source des données	versions
IERS(NRO) officiel	eop97C04_nro_itrf2014g		0h
POLE_NRO	POLE_NRO_0h.dat	IERS(NRO) + IGR (pôle) + Bulletin A	0h
	POLE_NRO_6h.dat	IERS(NRO) + IGR (pôle) + Bulletin A + interpolation	6h
	POLE_NRO_h.dat	IERS(NRO) + IGR (pôle) + Bulletin A+ interpolation	12h

Les fichiers POLE_NRO sont construits chaque semaine en fonction de la disponibilité des différentes sources:

Xp / Yp	IERS	IGS Rapides Bulletins A	
dUT1	IERS	Bulletin A	
X/Y Dpsi/Deps	IERS	Nulles	

Corrections sub-dirunes

Nouveaux standards en cours de validation

- ⇒ Nouvelle version la libnro (sofa + sub-diurnes)
- \Rightarrow Après la 19_1

GINS 19.1: Fichiers d'environnement (2)

ionex_files	ionosphere/defaut
manoeuvers	manœuvre/topex /jason
solar_activity	flux/acsol2 ou flux/nominal
atmospheric_s1s2_loading_model	charge/s1_s2_def_cm.dat ou charge/nominal
Center_of_mass_correction	charge/cmc/fes2004.cmc ou charge/cmc/nominal
thermosphere	atmosphere/dtm_94bis ou atmosphere/nominal *

GINS 19.1: Fichiers d'environnement (3)

Spécifiques GNSS

macromodel	macromodeles/tous.xml ou macromodeles/nominal
gnss_antenna	antex/igs_08.atx igs_14.txt
orbites	GRG ou GR2 IG2
gnss_clocks	GRG ou GR2 IG2

Voir m.a.j de GPS_info renommé en GNSS_info

Remarque depuis la semaine 1934 (fin janvier) les produits de l'IGS sont compatibles ITRF2014

Les produits IG2 sont à 300 secondes et donc incompatibles avec un traitement d'un mobile rapide...

Produits GRG pour fixation ambig. entières GALILEO depuis nov 2018

Librairie commune PREPARS/GINS

gscompile link avec libgsutil

Dates_mod	Outils de conversion des dates (calend1/jul/tcivjul,tjulciv)	
Allocate_mod	Eléments permettant de gérer les allocations dynamiques	
Comon_free	Bloc free du directeur	
F90kind.mod	Typage des variables / opérateurs de comparaison .leegee. egalite.	
Sam_mod	Elements permettant le tri (surcouche de sort) - anciennement libgins	
Blas_int8_mod	Elements de gestion des appels Blas - anciennement libgins	
Fortran_unit_mod	Elements de gestion des unités logiques	
coord_trad_mod.f90	Conversion coord rectangulaires / coord geographiques	
Charge_langue_mod	Eléments de manipulation des fichiers de messages en différentes langu	
Second_mod	Fonction second() – appel à system_clock	
String_mod	Routines de conversions de chaines de caracteres (lower <-> upper)	
Quaternions_mod	Manipulation des quaternions (multiplication, interpolation)	
Orb_trad_mod	Outils de conversion des paramètres orbitaux	
Rotation_3D_mod	Manipulation de vecteur et rotations	
Cortai_mod	Conversion échelles de temps	
Interpolation_mod	Interpolations lagrange, tchebitcheff	
Hardisp_mod	Charge oceanique hardisp	

GINS 19.1: Evolutions du directeur

- Des clés ont été déclarées obsolètes et remplacées par des noms plus clairs
 - Les anciennes clés existent encore mais warning si vous les utilisez
- gnss external attitude dans bloc environnement (lect. quaternions attitude)

- L'outil **maj dir** met à jour les directeurs.
- Le descriptif est issu directement de la grammaire
- RAPPEL: directeur help

• Dites nous ce qui n'est pas clair...

Spécifique aux Mesures et aux Satellites

Doris

Planéto

- Gestion de la dualité MRO/ROSETTA: pour ROSETTA les quaternions sont exprimés par rapport au repère J2000 (repère terrestre) alors que pour MRO ils sont exprimés par rapport au repère MME2000 (équateur martien).
- Impressions des dates et position des périastres quand on n'est pas en mode « flyby »
- - Corrections des valeurs pour le calcul du centre de phase antenne pour Rosetta
- Correction des rotations des satellites naturels
- Ajout des options EPHELEMA_ANNULE_T et EPHELEMA_ANNULE_N
- gestion des trous dans les quaternions pour MRO et TGO`
- modif interpolation et prints dans les modes d attitude des satellites en planétaire
- rajout du mot clé free NO_WRITE_EPHEM_IN_EME pour forcer l'écriture de l'orbite en planétocentrique quand on a lu un bulletin en J2000
- possibilité de calculer les correction des mesure DSN ans les teo plutôt que dans les lec
- rajout print trace des correction tropo, couronne et antenne en planétaire
- prints de contrôle correction de couronne solaire
- correction inversion des clés de correction couronne et antenne et gestion antenne réception et émission séparées
- Ajout du free BUL_RAPPORT_SATNAT pour prendre en compte les éphémérides centrées sur un satnat.

Spécifique aux Mesures et aux Satellites

GNSS

- Introduction de la lecture des quaternions au format Orbex dans Gins + utilisation (attache dans bloc env. directeur avec « gnss_external_attitude »
- Fichier statistique "étendu" avec classique + pwu sur meme ligne (correc_mes mis à jour conjointement, marche avec les deux version defic pwu)
- - Prise en compte du gradient troposphérique pour le filtre de Kalman
 - En préparation aux travaux REPRO le fichier WL Galileo devient historique !!!
 - Modele SRP a priori de Montenbruck pour Galileo (mot clé free : GALSRP MONTENBRUCK)
- 1. Il est valable depuis début 2017, les dates de transitions ont étés revues
- Nouveau fichier
 « ginakat » : /work/GRGS/users/gnsexp/MUSAT/WSB_GAL_ginakat.dat

: we started to deliver information on unfixed satellites in GRG products.

As you know this is something we know when producing the GRG products but that it is not known by IPPP users. I precise the things with answers to few questions:

Where?

The files are today stored under the name /work/GRGS/users/gnsexp/bias/GRG_yyyy_ddd.bias

*BIAS S	VN PRN SITE	OBS1 OBS2 BIAS START	BIAS END	UNIT	IS FIXED 0 OR 1	PERCENT
*NAR	E01	2019:061:00000	2019:061:86370		1.0000	96.9253
*NAR	E02	2019:061:00000	2019:061:86370		1.0000	96.9485
*NAR	E03	2019:061:00000	2019:061:86370		1.0000	96.4742
*NAR	E04	2019:061:00000	2019:061:86370		1.0000	97.3394
*NAR	E05	2019:061:00000	2019:061:86370		1.0000	96.1457
*NAR	E07	2019:061:00000	2019:061:86370		1.0000	96.7207
*NAR	E08	2019:061:00000	2019:061:86370		1.0000	97.4707
*NAR	E09	2019:061:00000	2019:061:86370		1.0000	97.2011
*NAR	E11	2019:061:00000	2019:061:86370		1.0000	96.6282
*NAR	E12	2019:061:00000	2019:061:86370		1.0000	98.3094
*NAR	E13	2019:061:00000	2019:061:86370		1.0000	97.0065
*NAR	E14	2019:061:00000	2019:061:86370		1.0000	95.8163
*NAR	E15	2019:061:00000	2019:061:86370		1.0000	96.4278
*NAR	E18	2019:061:00000	2019:061:86370		0.000	0.000
*NAR	E19	2019:061:00000	2019:061:86370		1.0000	98.2409

The 5th column is used here: 1.0000 means "was fixed" and 0.000 was not fixed.

The 6th column gives the percentage.

This work for GPS and GAL satellites.

Period covered?

E21

We did recover the information with the start of Galileo ambiguity fixing it is to say with GPS week 2022 (7/10/2018). It will be updated each week.

How to use it?

We can decide to suppress completely the concerned satellites from the IPPP runs.

IPPP users can also use these files to determine which satellites have to be said "LIBRESAT" in the reglage.in file of ambigv2 (reglage.in this is the file attached by the option -optfixe of exe_gins). This will let the corresponding passes unfixed in the IPPP run.

. Déplacement des stations/loading

- Correction d'une erreur de signe dans calcul terme Nord du déplacement pole tide (subroutine calcul_maree_polaire) rajout clés de suppression du calcul de la force de marée polaire océanique et solide NO_OCEAN_POLE_TIDE et NO_SOLID_POLE_TIDE

. Simulation

- Suppression de la comparaison à l'attitude nominale en cas de simulation.

. Forces/Accéléromètre

- Disparition des vieilles routines du modèle de force : Obelix est systématiquement utilisé.
- Changement de l'ordre du calcul des forces pour faire d'abord l'accéléromètre puis les modèles de forces non gravitationnelles. Cela permet d'utiliser les données accéléromètriques quand elles sont présentes uniquement pendant une partie de l'orbite (cas d'une orbite excentrique par exemple) et d'utiliser les modèles sur les parties de l'orbite ou il n'y a pas de de données.
 - Rajout de l'allumage de l'accéléromètre de GRACE-B entre JUL50= 24593.5 et 24615.75
 - Modification du comptage du nombre de paramètres de biais accéléromètriques.
- Changement de l'échelle de temps UT1 en TUC (désormais les variations du pôle < jour sont prises en compte pole_subdiurne_mod.f90)

. GRACE

Nouveautés GINS relatives à GRACE

Nouvelles clés « userext_addition » :

DECALAGE_SCA_GRACE

Permet d'introduire un décalage temporel lors de la lecture de l'attitude des satellites GRACE donnée par les quaternions (ne marche que pour GRACE) : donner la valeur du décalage temporel exprimée en s.

Exemple:

DECALAGE_SCA_GRACE 0.23

PITCH BIAS SATBAS

Permet d'introduire un biais en pitch de l'attitude des satellites GRACE donnée par les quaternions (ne marche que pour GRACE) :

- coller au mot clé le n° du satellite bas (1 ou 2)
- donner la valeur de l'angle de pitch exprimée en m de décalage du CDP KBR suivant l'axe Z-sat.

Exemple:

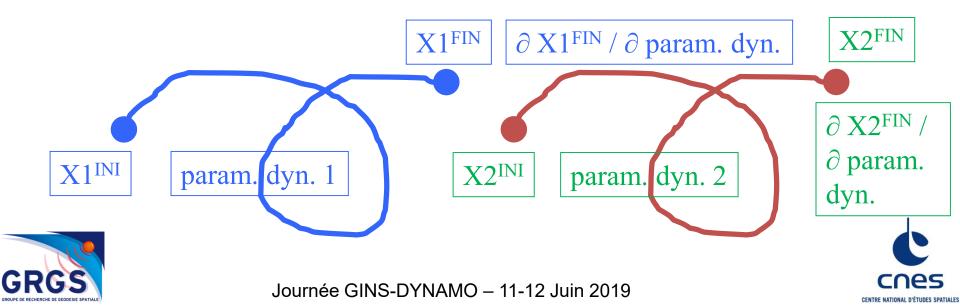
PITCH_BIAS_SATBAS1 -0.0018

PITCH BIAS SATBAS2 -0.0039

Nouveautés GINS relatives à GRACE

USE RAW ACC DATA

Indique d'utiliser les données accélérométriques brutes (non filtrées par le filtre CRN du JPL) : le résidu à 1Hz des donnée filtrées est retranché des données filtrées.


Accrochage d'orbite dans GINS & DYNAMO

Le principe est de conserver dans les équations normales les informations permettant d'accrocher des arcs d'orbite consécutifs et de constituer ainsi des arcs plus longs que les arcs originaux.

Mise en œuvre dans GINS:

normal_equation : after_convergence_with_continuity_constraint

<u>Principe</u>: Stocker la position finale de l'arc d'orbite et les dérivées partielles de la position finale par rapport à tous les paramètres dynamiques de l'arc.

Stockage des informations dans l'équation normale

<u>Informations supplémentaires à la fin de l'équation normale :</u>

- GATHER
- Liste des labels du bulletin de fin d'arc (XYZ ou WPM)
- Valeurs du bulletin de fin d'arc (XYZ ou WPM)
- Liste des labels des paramètres dynamiques de l'arc (bulletin de début d'arc + paramètres de force)
- Valeurs des paramètres dynamiques de l'arc
- Pour chacun des éléments du bulletin de fin d'arc : dérivées partielles ce cet élément par rapport à chaque paramètres dynamique

Cumul des équations normales :

Les informations ci-dessus sont simplement ajoutées à la suite les unes des autres.

Mise en œuvre pratique de l'accrochage

- 1) Cumul par DYNAM_C des arcs à accrocher (à ce stade les arcs sont toujours indépendants) → EQN_CUMUL
- 2) Lancement de DYNAMO_G (= « GATHER ») pour créer l'équation normale d'accrochage des arcs. Seules valeurs à indiquer : la valeur de la contrainte d'accrochage pour chacun des 6 paramètres des bulletins → EQN GATHER
- 3) Cumul de EQN_CUMUL et EQN_GATHER pour réaliser l'accrochage des arcs → EQN_CUMUL_ACCROCHEE
- 4) Résolution de EQN_CUMUL_ACCROCHEE par DYNAMO_D

Mise en œuvre pratique de l'accrochage

- 1) Ce qui est géré par DYNAMO_C dans la partie « GATHER » :
 - Le renommage des paramètres
 - Le changement de valeur initiale des paramètres

- 2) Ce qui <u>n'est pas géré</u> par DYNAMO_B dans la partie « GATHER » :
 - La réduction ou l'élimination des paramètres

- 3) Ce qui <u>n'est pas géré</u> par DYNAMO_P dans la partie « GATHER » :
 - La compaction des paramètres

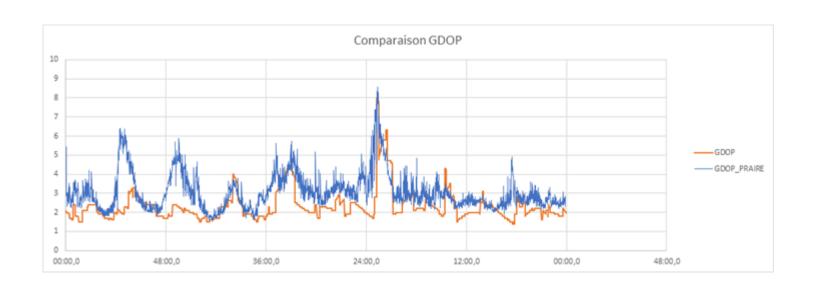
- Accrochage d'arcs
- changement de l'ordre du calcul des forces pour faire d'abord l accéléro et ensuite les modèles de forces non gravitationnelles
- Accéléro microscope
- rajout corrections accéléromètres dans les éphémérides avec forces éclatées
- Mise en module des rotations nro, planétaire
- Remplacement du "plouf" par un "warning" en cas d'erreur de normalisation des quaternions, et seuil à 2.e-8.
- Protection contre les plantages dus aux quaternions mal normalisés : Normalisation systématique des quaternions avec warning en cas de grosse erreur de normalisation.

Modifications exe_gins

- Rappel: même script sur toutes les plateformes
- Modifications:
 - -nar: attache un fichier biais pour ne pas fixer les satellites GRG non bloqués
 - Introduction grace-fo
 - modifications pour fixer les amiguites entieres GPS et/ou GALILEO
 - Introduction des orbites/horloges JP2

TAILLES DES CODES

	Prepars90	Gins90
VALIDE_13_1	904 Mo	1 481 Mo
VALIDE_14_1	905 Mo	602 Mo
VALIDE_15_1	857Mo	603 Mo
VALIDE_16_1	863Mo	580Mo
VALIDE_17_1	912Mo	490Mo
VALIDE_18_1	913Mo	492Mo
VALIDE_19_1	994Mo	378Mo



Scripts et outils annexes

•prairie_v49 (par défaut dans exe_gins après livraison)

- RAPPEL: SP3 sur tite pour cut-off donc pas d'utilisation du cut-off en local
- elle contient maintenant le calcul du PDOP et la possibilité de lire le fichier WSB GAL historique (réalisé par Térence).
- Pour illustrer, comparaison du GDOP de rtklib et de prairie pour le même fichier ; ca colle plutôt bien.
- Rappel : un GDOP (ou PDOP) élevé indique des problèmes de géométrie.

Scripts et outils annexes

•prairie_v49 (par défaut dans exe_gins après livraison 19_1)

- v49 (Juin 2019)
- •
- Ajout calcul PDOP propre (TD) et modif sorties speciales pour HDOP/VDOP/PDOP/TDOP
- - Mise en common_options des sigmas G/R/E (defaut G = 0.6 m RE=18.97 m pour coller avec avant = 0.6 * sqrt(1000))
- - Revisite gestion_biais wl15 (nouveau format) pour utiliser des fichiers événements
- Rappels v48 (Mars 2019):
- •
- nsatmaxgal passe à 38
- module_position.f90 revu pour calcul des dates éclipses en fonction de epq et interval plutot que
- dates lues dans le rinex (en particulier, si il y a des trous, ca plante).
- - exe_prairie plus "POSIX" qu'avant et suppression de variables inutiles.
- ajout de l'option "GARDE_ELEV_UNK" (activee par ligne de commande -elevmin_keep_unkn (e.g elevmin_keep_unkn 8))
- - ajout warning en cas de ligne de commande avec "-eclipse|-statique|-mobile|-elevmin|-masque" sans "-orb"
- ajout option BORNE_GAL_DIONO
- Correction CPU pour éclipses (on limite à 1 calcul toutes les 2 min ca va plus vite, change légèrement les dates éclipses)

Scripts et outils annexes

- listing_summarize:
 - rajout information sur GALILEO
- exe_ppp.sh
 - -nar
 - modifications pour fixer les amiguites entieres GPS et/ou GALILEO

RAPPELS

Nom	Rôle
GS_HOME	Espace de référence du produit GINS (penser à ~geodexp au Centre Informatique)
GS_USER	Espace d'utilisation de GINS On y trouve par exemple le répertoire gin
GS_DATABASE	Espace de la base de données (miroir STAF au Centre Informatique)
GS_WORK	Espace des fichiers d'environnement personnels de l'utilisateur Espace d'arrivée des fichiers produits par GINS avec l'option –serveur (spécifique Centre Informatique)

Cf. Manuel utilisateur gins

GINS 19.1: Figements

Nouveaux arcs tests pour validation bienvenus

GINS-PC: Etat des lieux

- •Formation Toulouse en mars et Costa Rica en mai
- •adresse générique : ginspc@yahoogroupes.fr
- ginspc-v2.5
- •Nbre users 40

