Contraindre la structure interne de Mars avec GINS

Marie-Julie Péters, Sébastien Le Maistre, Marie Yseboodt, Jean-Charles Marty, Attilio Rivoldini and Véronique Dehant

Journées GINS, Toulouse

12 juin 2019

Context

> Radioscience experiment with a lander at the surface of Mars

> Objective: study the rotation and orientation of Mars

LaRa
 InSigh

Mars rotation

- Variations of Mars' rotation rate
 = Length-Of-Day variations
 (ΔLOD)
- Variations of the orientation of the rotation axis in space = precession (long term) + nutations (short term)

Rotation and orientation parameters = **MOP**

 \rightarrow Internal structure / CO₂ cycle

2 missions to Mars

- NASA mission
- Landing: 26th november 2018
- RISE transponder (Rotation and Interior Structure Experiment)

- EXOMAES LANGER RANGE
- ESA/RosCosmos joint mission
- Launch date: July 2020 (rover+platform)
- LaRa Belgian transponder (Lander Radioscience)

Method

Numerical simulations with GINS/DYNAMO to quantify the improvement in the determination of the MOP by synergy RISE/LaRa

> GINS

 Simulations of the lander-Earth measurements + Doppler noise for RISE and LaRa

DYNAMO

- Stacking of normal equations (dynamo_c)
- Inversion and resolution with additional constraints (dynamo_d)
- Combination: RISE 700 days + LaRa 700 days successively

Among all MOP of the Martian rotation model, we estimate:

- Coordinates of lander position (X,Y,Z)
- Precession rate
- Obliquity rate
- Annual and semi-annual amplitudes ΔLOD
- Annual, semi-annual and ter-annual amplitudes of nutations

Operational characteristics

	RISE	LaRa
Mission	InSight	ExoMars 2020
Starting date	November 2018	Mars 2021
Landing site	Elysium planitia (4°N, 136°E)	Oxia Planum (18°N, 333°E)
Mission duration	700 days	700 days
Pass duration	60 min/day	45 min, twice per week
Earth elevation	[10°,30°]	[35°,45°]
Doppler noise	White noise 0.05 mm/s	
Earth stations	3 DSN stations	

InSight cases

Tracked only during the mornings for the first 200 days

Optimal case Configuration planned before the landing (alternate east-west tracking after 200 days and unconstrained azimuth)

Nominal case More realistic configuration: max. 25° off bore sight and 5° azimuthal offset

Simulations setup

> Earth line of sight (LOS) geometry in terms of elevation and azimuth

Simulations results

> Impact of the number of data points on the nutation uncertainties as estimated by RISE optimal case, RISE nominal case and LaRa separately

> Impact of the synergy between RISE and LaRa on the nutation uncertainties for the nominal RISE optimal case and the RISE nominal case followed by LaRa.

Implication for Mars interior

> The liquid core effect on p_2 and r_3 nutation amplitudes as a function of core radius.

>If r_{cmb} = 1800 km, uncertainties coming from synergy lead to an uncertainty of about ± 250 and ± 200 km on the core radius.

Conclusion

- By combining 700 nominal RISE tracking days with 700 LaRa tracking days, we achieve a precision of 5.5 mas and 3.75 mas for the semi-annual prograde and the ter-annual retrograde nutations amplitudes respectively.
- Although LaRa will operate 5-7 times less than RISE, LaRa has the advantage of its richer geometry which compensates the limited amount of data.
- The contribution of LaRa (even if small) in MOPs determination can have a significant impact on the constraints inferred on the core size.

Merci de votre attention !

Earth declination

