

Photo : Shom

Restitution de contenus intégrés en vapeur d'eau GNSS sur le BH2 Borda

Pierre Bosser¹, Olivier Bock², Raphaël Legouge ³, Olivier Caumont ⁴, Nicolas Laurain ^{1,2}, Julian Le Deunf ³

¹ENSTA Bretagne / Lab-STICC ²IGN / IPGP ³Shom ⁴Météo-France

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - の々で

Introduction	État de l'art 000	Analyse des données du BH2 Borda (Shom)	Conclusio
Plan			ENSTA Bretagne L'océan

- GNSS et Vapeur d'eau
- GNSS et Vapeur d'eau en mer

(ロ) (回) (三) (三)

Ø METEO

GNSS et Vapeur d'eau

Introduction

Mesure de la vapeur d'eau par GNSS

Météorologie / climatologie par GNSS :

État de l'art

- Pour la détermination précise des coordonnées (< quelques dizaines de mms), nécessité d'estimer le retard à la propagation dans la troposphère (ZTD).
- Restitution de contenus intégrés en vapeur d'eau (IWV) à partir de ces retards à la propagation :

$$IWV = Q(Tm)ZWD$$

 T_m : température moyenne de la colonne atmosphérique humide

$$ZTD = ZHD + ZWD$$

- **ZHD** : retard hydrostatique (\propto Pression de surface)
- ZWD : retard humide

Précision : 1-2 kg·m⁻² IWV (~ 6-12 mm ZTD) en statique (stations terrestres fixes) et temps différé
[Guerova et al., 2016]

イロト イヨト イヨト イヨト 二日

Introduction

Mesure de la vapeur d'eau par GNSS

État de l'art

Utilisation désormais courante en climatologie, météorologie pour des antennes **fixes** et **terrestres** (essentiellement permanentes).

- Adéquation avec des mesures issues d'instruments métrologiques conventionnels [Bevis et al., 1992, Elgered et al., 1997]
- Utilisation en climatologie ou lors de campagnes de recherche sur les processus météorologiques
 [Bock et al., 2016, Hadad et al., 2018]
- Assimilation des ZTD ou IWV dans les modèles de prévision numérique du temps pour des stations terrestres fixes en temps quasi réel [Poli et al., 2007, Bennitt and Jupp, 2012]

・ロン ・回 と ・ 回 と ・ 回 と

NSTA IGN

Mesure de la vapeur d'eau par GNSS en mer

Pourquoi utiliser des mesures GNSS réalisées en mer ?

Origine de phénomènes météorologiques sévères et à risque.

Source: http://www.nasa.gov/(03/09/2019-11:00)

Introduction 00000

・ロト ・回ト ・ヨト ・ヨト

METEC

IGN

GNSS et Vapeur d'eau en mer

Introduction

Mesure de la vapeur d'eau par GNSS en mer

Pourquoi utiliser des mesures GNSS réalisées en mer ?

État de l'art

Zone souvent limitée à des observations de surface ou issue de télédétection par satellite.

Introduction

Mesure de la vapeur d'eau par GNSS en mer

Intérêt des mesures GNSS-Tropo réalisées en pleine mer :

Météorologie : potentiel des navires d'opportunité ; équipement simple et autonome possible.

Limitation : transmission en temps-réel

État de l'art

Attentes en terme de précision / latence : 2 kg·m⁻² / 15 min pour la prévision à 1h [Offiler, 2010]

- Climatologie : potentiel des navires de recherche, déjà équipés ; analyse en temps différé pour la validation des modèles de climat
 - Attentes en terme de précision : 1 à 2 kg·m⁻²
- **Hydrographie** : Meilleure correction de la troposphère ⇒ meilleure estimation de la verticale.
 - Attentes en terme de précision: 20 à 40 mm (position de l'antenne)

・ロン ・回 と ・ 回 と ・ 回 と

GNSS et Vapeur d'eau en mer

De potentiels porteurs

Pour la météorologie...

Source: http://www.marinetraffic.com (13/08/2019 - 09:00)

・ロト ・回ト ・ヨト ・ヨト

GNSS et Vapeur d'eau en mer

De potentiels porteurs

Pour la climatologie ...

Source: https://www.flotteoceanographique.fr/ (02/09/2019 - 14:00)

・ロト ・ 四ト ・ ヨト ・ ヨト

ntroduction	État de l'art ೦೦೦	Analyse des données du BH2 Borda (Shom)	Conclusion
Plan			EVENSIA Under einerferse Evense Under einerferse

2 État de l'art
Etudes récentes
Bilan

3 Analyse des données du BH2 Borda (Shom)

4 Conclusion

・ロ・・ (日・・ モ・・ モ・

Travaux publiés depuis 2005

	Calcul, logiciel Constellation	Zone Période	RMS (réf.)
[Rocken et al., 2005]	PPP, BGSW	Caraïbes	1,4 kg⋅m ^{−2} (RS)
	GPS	2 wks (2003)	2,6 kg⋅m ^{−2} (WVR)
[Fujita et al., 2008]	PPP, RTNet GPS	Océan Indien 3 mths (2006)	2,8 kg⋅m ⁻² (RS)
[El Yahmadi, 2009]	PPP, BGSW_AH	Méditerranée	2,1 kg⋅m ^{−2} (CORS)
	GPS	7 days (2007)	2,1 kg⋅m ^{−2} (RTNet)
[Boniface et al., 2012]	PPP_AR, RTNet GPS	Méditerranée 4 mths	2,3 kg⋅m ⁻² (CORS) 2,4 kg⋅m ⁻² (Aladin) 3,1 kg⋅m ⁻² (Modis)
[Fujita et al., 2014]	PPP_AR, RTNet	Japon	3,6 kg⋅m ^{−2} (RS/GPS)
	GPS, Glonass, QZSS	1 mth (2013)	2,0 kg⋅m ^{−2} (RS/GNSS)

Références pour les RMS : **RS** : radiosondage, **WVR** : radiomètre micro-onde terrestre, **CORS** : station GNSS permanentes, **Aladin**, **ERAI**, **Arome** : modèle de prévision numérique du temps, **Modis**, **SARAL**, **HY-2A** : radiomètre satellite.

P. Bosser et al.

IWV GPS en mer

E ► E ∽ Q (~ 2019-03-28 9/27

イロン イヨン イヨン イヨン

Travaux publiés depuis 2005

	Calcul, logiciel Constellation	Zone Période	RMS (réf.)
[Shoji et al., 2016]	PPP, RTKlib GPS, Glonass, QZSS	Japon 2015	3,7 kg⋅m ^{−2} (RS) 2,8 kg⋅m ^{−2} (CORS)
[Shoji et al., 2017]	PPP, RTKlib GPS, Glonass, QZSS	Japon 10 mths (2016-2017)	2,8 kg⋅m ⁻² (RS)
[Wang et al., 2019]	PPP_AR, Panda	Océan Arctique	1,0 kg⋅m ⁻² (CORS) 1,2 kg⋅m ⁻² (ERAI) 1,2 kg⋅m ⁻² (RS)
	GPS, Glonass, Galileo	20 days (2016)	1,9 kg⋅m ^{−2} (SARALL)
[Liu et al., 2019]	PPP_AR, Panda GPS, Glonass,	Océan Indien 3 days (2014)	1,0 kg⋅m ⁻² (HY-2A)
[Fourrié et al., 2019]	PPP_AR, GPSPPP GPS	Méditerranée 2 mths (2012)	3,0 kg⋅m ⁻² (Arome-WMED)

Temps réel

Références pour les RMS : RS : radiosondage, WVR : radiomètre micro-onde terrestre, CORS : station GNSS permanentes, Aladin, ERAI, Arome : modèle de prévision numérique du temps, Modis, SARAL, HY-2A : radiomètre satellite.

- Échelles spatio-temporelles variées, quelques jours à plusieurs mois, partout sur le globe.
- PPP largement privilégié, avec résolution des ambiguïtés pour les travaux récents
- Temps réel limité :
 - Nombreuses mesures aberrantes
 - Fiabilité, disponibilité et diffusion des éphémérides temps-réel (MADOCA, Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis)
- Quelques pistes méthodologiques à suivre :
 - Multi-constellation privilégié
 - Corrélation important ZTD / h : pondération en fonction de l'élévation, angle de coupure bas
 - Contraintes d'évolution, a priori, etc.
 - Pas de méthodologie claire.

・ロン ・回 と ・ 回 と ・ 回 と

Introduction 00000	État de l'art ○O●	Analyse des données du BH2 Borda (Shom)	Conclusion
Bilan			
Perfor	mances		Bretagne L'ocdan en référence

Performances du calcul GNSS-Tropo cinématique en pleine mer :

- \blacksquare Temps différé : RMS \sim 1-4 kg $\cdot m^{-2}$
 - Écarts inférieurs à 2 kg·m⁻² si comparaisons à CORS
 - Conditions particulières des deux études les plus favorables (écarts > 2 kg·m⁻² sinon)
- \blacksquare Temps réel : RMS $\sim 3 \ kg \cdot m^{-2}$
 - Problématiques du temps réel : encore beaucoup de mesures aberrantes, fort taux de rejet des quantités estimées (5-15%).

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Introduction

Plan

État de l'art

3 Analyse des données du BH2 Borda (Shom)

- Présentation
- Résultats de l'analyse
- Étude des contenus intégrés en vapeur d'eau
- Analyse dans un contexte de prévision météorologique

4 Conclusion

・ロン ・回 と ・ ヨン ・ ヨン

Données GNSS

Présentation

- Bâtiment hydrographique de seconde classe (BH2) du Shom
- Période du 3 au 17 août 2015 (DOY 215 à 229)
- Route de Brest à Toulon
- 2 antennes Zephyr GNSS II (TRM57970.00) GPS+Glonass, BRDA et BRD2, distantes d'environ 2,30 m en horizontal, tirant d'air moyen de 17,32 m.

Introduction 00000	État de l'art 000	Analyse des données du BH2 Borda (Shom) O●○○○○○○○○	Conclusion
Présentation			
Calcul			SH M ENSTA Bretagne Locdan en ofference

- Données GPS seules
- Temps différé sur fenêtre de 30 h centrée sur midi
- Produits JPL (dont WLB pour la résolution des ambiguités)
- Troposphère : fonction de projection GMF, a priori GPT, marche aléatoire de 5 mm·h^{-1/2} pour les ZTD, 0,5 mm·h^{-1/2} pour les gradients horizontaux.
- Angle de coupure de 3 deg, pondération en SQRTSIN
- Pas de contraintes sur les positions
- Solution à 30 s
- Extraction IWV :

$$IWV = Q(T_m) \times (ZTD - ZHD)$$

- ZTD retard estimé lors du calcul GNSS
- ZHD retard hydrostatique, déduit des valeurs de pression au niveau de la mer du modèle ERA5.
- *T_m*, Température moyenne de la colonne humide calculées par les grilles VMF de la TU-Wien.

IGN

Résultats de l'analyse

$\underset{\text{SSH}}{\text{Composante verticale}}$

Correction : ondulation (EGM2008), marée océanique (FES2014a), marée terrestre, effet barométrique, tirant d'air moyen

$\underset{\text{SSH}}{\text{Composante verticale}}$

Correction : ondulation (EGM2008), marée océanique (FES2014a), marée terrestre, effet barométrique, tirant d'air moyen

Mouillage en Rade de Brest : défaut FES2014 ?

Composante verticale

Correction : ondulation (EGM2008), marée océanique (FES2014a), marée terrestre, effet barométrique, tirant d'air moyen

Passage Gibraltar FES2014 : défaut FES2014 ?

Composante verticale

Correction : ondulation (EGM2008), marée océanique (FES2014a), marée terrestre, effet barométrique, tirant d'air moyen

Arrivée en rade de Toulon ... ?

Composante verticale

Correction : ondulation (EGM2008), marée océanique (FES2014a), marée terrestre, effet barométrique, tirant d'air moyen

Rigoureusement il faudrait corriger le pilonnement, l'enfoncement dynamique, l'attitude, la dérive de l'enfoncement... (Mais ce n'est pas mon sujet !)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Ó

IGN

00000

Étude des contenus intégrés en vapeur d'eau

Données utilisées pour la comparaison

ERAI : réanalyse globale du Centre Européen de météorologie (ECMWF)

 $\blacksquare~6~h \times$ 0,75 deg (\sim 60-80 km), grilles /WV

État de l'art

Correction de l'IWV à l'altitude de l'antenne

ERA5 : réanalyse globale du Centre Européen de météorologie (ECMWF)

- 1 h \times 0,25 deg (\sim 20-30 km), grilles *IWV* et *P*_{msl}
- Correction de l'IWV à l'altitude de l'antenne
- Arome, modèle à aire limitée de Météo-France
 - Analyse (modèle à l'époque de l'assimilation) et prévision à 1h, 1,3 km
 - Extraction *IWV* à l'altitude de l'antenne (MF)
- Arpege, modèle global de Météo-France
 - Analyse (modèle à l'époque de l'assimilation) et prévision à 6h, 10 km
 - Extraction /WV à l'altitude de l'antenne (MF)
- Modis, radiomètre satellite
 - Extraction des /WV à moins de 10 km & 300s

・ロン ・回 と ・ 回 と ・ 回 と

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Évolution temporelle

2019-03-28 17 / 27

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Évolution temporelle

 Bonne cohérence d'ensemble, en particulier lors du mouillage

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Évolution temporelle

- Bonne cohérence d'ensemble, en particulier lors du mouillage
- Écarts remarquables sur certaines périodes pour certains modèles

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Évolution temporelle

- Bonne cohérence d'ensemble, en particulier lors du mouillage
- Écarts remarquables sur certaines périodes pour certains modèles
- Écarts significatifs pour MODIS

Analyse des données du BH2 Borda (Shom)

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

SH

2015-221

2015-21 38*N

Analyse des données du BH2 Borda (Shom)

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

SH

Comparaison à la solution BRDA

P. Bosser et al.

Analyse des données du BH2 Borda (Shom)

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

SH

Analyse des données du BH2 Borda (Shom)

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

SE

- Très bon accord entre les 2 antennes
- Peu concluant concernant MODIS
- On retrouve les écarts remarquables (jours) 117 et 220)

P. Bosser et al.

18/27

Analyse des données du BH2 Borda (Shom)

Conclusion

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Comparaison à la solution BRDA

	N	$b \pm \sigma [\text{kg} \cdot \text{m}^{-2}]$	RMS [kg⋅m ⁻²]	$N \le \pm 2 \text{ kg} \cdot \text{m}^{-2}$
ERA5	327	$\textbf{+0.18} \pm \textbf{2.37}$	2.38	63.3%
ERAI	53	$\textbf{+1.56} \pm \textbf{3.28}$	3.63	43.4%
ARO_AN	190	$\textbf{+0.06} \pm \textbf{1.84}$	1.84	73.7%
ARO_FC1	190	$\textbf{-0.03} \pm \textbf{1.86}$	1.86	77.4%
ARP_AN	53	$\textbf{-0.14} \pm \textbf{2.48}$	2.48	56.6%
ARP_FC6	53	$\textbf{-0.06} \pm \textbf{2.86}$	2.86	49.1%
MODIS_IR	16	+0.96 \pm 3.69	3.82	50.0%
BRD2	39408	$\textbf{-0.13} \pm \textbf{0.87}$	0.88	97.0%

ZWD [mm] $\approx 6.5 \times IWV [kg \cdot m^{-2}]$

P. Bosser et al.

2019-03-28 19/27

<ロ> (四) (四) (三) (三) (三)

Analyse des données du BH2 Borda (Shom)

Conclusion

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Comparaison à la solution BRDA

		Ν	$b \pm \sigma [\text{kg} \cdot \text{m}^{-2}]$	RMS [kg⋅m ⁻²]	$N \le \pm 2 \text{ kg} \cdot \text{m}^{-2}$
X	ERA5	327	$\textbf{+0.18} \pm \textbf{2.37}$	2.38	63.3%
Χ	ERAI	53	$+1.56\pm3.28$	3.63	43.4%
	ARO_AN	190	+0.06 \pm 1.84	1.84	73.7%
	ARO_FC1	190	$\textbf{-0.03} \pm \textbf{1.86}$	1.86	77.4%
	ARP_AN	53	$\textbf{-0.14} \pm \textbf{2.48}$	2.48	56.6%
	ARP_FC6	53	$\textbf{-0.06} \pm \textbf{2.86}$	2.86	49.1%
	MODIS_IR	16	$\textbf{+0.96} \pm \textbf{3.69}$	3.82	50.0%
	BRD2	39408	$\textbf{-0.13} \pm \textbf{0.87}$	0.88	97.0%

Apport ERA5 par rapport à ERAI

ZWD [mm] $\approx 6.5 imes$ IWV [kg·m $^{-2}$]

P. Bosser et al.

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < 三 ▶ = つ Q () 2019-03-28 19/27

Analyse des données du BH2 Borda (Shom)

Conclusion

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Comparaison à la solution BRDA

		Ν	$b \pm \sigma [\text{kg} \cdot \text{m}^{-2}]$	RMS [kg⋅m ⁻²]	$\mathit{N} \leq \pm 2~\mathrm{kg} \cdot \mathrm{m}^{-2}$
	ERA5	327	+0.18 \pm 2.37	2.38	63.3%
	ERAI	53	$\textbf{+1.56} \pm \textbf{3.28}$	3.63	43.4%
X	ARO_AN	190	+0.06 \pm 1.84	1.84	73.7%
X	ARO_FC1	190	$\textbf{-0.03} \pm \textbf{1.86}$	1.86	77.4%
	ARP_AN	53	$\textbf{-0.14} \pm \textbf{2.48}$	2.48	56.6%
	ARP_FC6	53	$\textbf{-0.06} \pm \textbf{2.86}$	2.86	49.1%
	MODIS_IR	16	$\textbf{+0.96} \pm \textbf{3.69}$	3.82	50.0%
	BRD2	39408	$\textbf{-0.13} \pm \textbf{0.87}$	0.88	97.0%

Écarts les plus faibles, mais zone limitée ; Analyse meilleure que prévision

ZWD [mm] $\approx 6.5\!\times\!\text{IWV}\,[\text{kg}\!\cdot\!\text{m}^{-2}]$

P. Bosser et al.

IWV GPS en mer

2019-03-28 19/27

<ロ> (四) (四) (注) (注) (注) (注)

Analyse des données du BH2 Borda (Shom)

Conclusion

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Comparaison à la solution BRDA

		Ν	$b \pm \sigma [\text{kg} \cdot \text{m}^{-2}]$	RMS [kg⋅m ⁻²]	$N \le \pm 2 \text{ kg} \cdot \text{m}^{-2}$
	ERA5	327	$\textbf{+0.18} \pm \textbf{2.37}$	2.38	63.3%
	ERAI	53	$\textbf{+1.56} \pm \textbf{3.28}$	3.63	43.4%
	ARO_AN	190	+0.06 \pm 1.84	1.84	73.7%
	ARO_FC1	190	$\textbf{-0.03} \pm \textbf{1.86}$	1.86	77.4%
X	ARP_AN	53	$\textbf{-0.14} \pm \textbf{2.48}$	2.48	56.6%
X	ARP_FC6	53	$\textbf{-0.06} \pm \textbf{2.86}$	2.86	49.1%
	MODIS_IR	16	+0.96 \pm 3.69	3.82	50.0%
	BRD2	39408	$\textbf{-0.13} \pm \textbf{0.87}$	0.88	97.0%

Analyse meilleure que prévision

ZWD [mm] $\approx 6.5 \times IWV \, [kg \cdot m^{-2}]$

P. Bosser et al.

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < 三 ▶ = つ Q () 2019-03-28 19/27

Analyse des données du BH2 Borda (Shom)

Conclusion

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Comparaison à la solution BRDA

		Ν	$b \pm \sigma [\text{kg} \cdot \text{m}^{-2}]$	RMS [kg⋅m ⁻²]	$N \le \pm 2 \text{ kg} \cdot \text{m}^{-2}$
X	ERA5	327	$\textbf{+0.18} \pm \textbf{2.37}$	2.38	63.3%
X	ERAI	53	$+1.56\pm3.28$	3.63	43.4%
X	ARO_AN	190	+0.06 \pm 1.84	1.84	73.7%
X	ARO_FC1	190	$\textbf{-0.03} \pm \textbf{1.86}$	1.86	77.4%
X	ARP_AN	53	$\textbf{-0.14} \pm \textbf{2.48}$	2.48	56.6%
X	ARP_FC6	53	$\textbf{-0.06} \pm \textbf{2.86}$	2.86	49.1%
	MODIS_IR	16	$\textbf{+0.96} \pm \textbf{3.69}$	3.82	50.0%
	BRD2	39408	$\textbf{-0.13} \pm \textbf{0.87}$	0.88	97.0%

Plutôt concluant : "meilleur" modèle \Rightarrow meilleure adéquation

ZWD [mm] $\approx 6.5 imes$ IWV [kg·m $^{-2}$]

P. Bosser et al.

IWV GPS en mer

・ロ・・聞・・聞・・聞・ ・ しゃくの

2019-03-28 19 / 27

Analyse des données du BH2 Borda (Shom)

Conclusion

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Comparaison à la solution BRDA

		Ν	$b \pm \sigma [\text{kg} \cdot \text{m}^{-2}]$	RMS [kg⋅m ⁻²]	$\mathit{N} \leq \pm 2~\mathrm{kg}\cdot\mathrm{m}^{-2}$
	ERA5	327	$\textbf{+0.18} \pm \textbf{2.37}$	2.38	63.3%
	ERAI	53	$\textbf{+1.56} \pm \textbf{3.28}$	3.63	43.4%
	ARO_AN	190	$\textbf{+0.06} \pm \textbf{1.84}$	1.84	73.7%
	ARO_FC1	190	$\textbf{-0.03} \pm \textbf{1.86}$	1.86	77.4%
	ARP_AN	53	$\textbf{-0.14} \pm \textbf{2.48}$	2.48	56.6%
	ARP_FC6	53	$\textbf{-0.06} \pm \textbf{2.86}$	2.86	49.1%
X	MODIS_IR	16	+0.96 \pm 3.69	3.82	50.0%
	BRD2	39408	$\textbf{-0.13} \pm \textbf{0.87}$	0.88	97.0%

Résultats médiocres ; Zone d'accroche à revoir ?

ZWD [mm] $\approx 6.5\!\times\!\text{IWV}\,[\text{kg}\!\cdot\!\text{m}^{-2}]$

P. Bosser et al.

IWV GPS en mer

2019-03-28 19 / 27

<ロ> (四) (四) (注) (注) (注) (注)

Analyse des données du BH2 Borda (Shom)

Étude des contenus intégrés en vapeur d'eau

Contenus intégrés en vapeur d'eau

Comparaison à la solution BRDA

		N	$b \pm \sigma [\text{kg} \cdot \text{m}^{-2}]$	RMS [kg⋅m ⁻²]	$\mathit{N} \leq \pm 2~\mathrm{kg}\cdot\mathrm{m}^{-2}$
	ERA5	327	$\textbf{+0.18} \pm \textbf{2.37}$	2.38	63.3%
	ERAI	53	$\textbf{+1.56} \pm \textbf{3.28}$	3.63	43.4%
	ARO_AN	190	$\textbf{+0.06} \pm \textbf{1.84}$	1.84	73.7%
	ARO_FC1	190	$\textbf{-0.03} \pm \textbf{1.86}$	1.86	77.4%
	ARP_AN	53	$\textbf{-0.14} \pm \textbf{2.48}$	2.48	56.6%
	ARP_FC6	53	$\textbf{-0.06} \pm \textbf{2.86}$	2.86	49.1%
	MODIS_IR	16	+0.96 \pm 3.69	3.82	50.0%
Χ	BRD2	39408	$\textbf{-0.13} \pm \textbf{0.87}$	0.88	97.0%

Très bonne cohérence entre les 2 antennes

ZWD [mm] $\approx 6.5 \times IWV [kg \cdot m^{-2}]$

P. Bosser et al.

<ロ> (四) (四) (注) (注) (注) (注) 2019-03-28

19/27

Introduction 00000 État de l'art

Analyse des données du BH2 Borda (Shom)

Conclusion

Analyse dans un contexte de prévision météorologique

Contexte

SH M Eretagne Locan en reférence

Objectif : analyse GNSS à h+10 min pour une prévision à h + 60 min

Deux pistes :

Produit ultra-rapide du JPL :

- Possibilité de résoudre les ambiguïtés
- Résolution temporelle limitée (15 min / 5 min)
- Latence élevée (2h)

Produit temps-réel expérimental de l'IGS, générés par le CDDIS à partir du flux IGC1 :

- Résolution temporelle fine (30 s / 10 s)
- Latence très faible (quelques secondes)
- Pas de résolution des ambiguïtés

Solution IGS_RT choisie

・ロト ・回ト ・ヨト ・ヨト

Introduction

État de l'art

Analyse dans un contexte de prévision météorologique

Analyse des données BRDA :

- Session 30h centrée sur midi
- Sessions plus courtes, 6h toutes les 3h

Autres paramètres identiques au traitement de référence.

Screening de la solution à l'issue du calcul à partir des erreurs formelles :

- **Rejet des positions telles que** σ_{ENU} >5 cm
- Rejet des ZTD tels que $\sigma_{ZTD} > 4 \text{ mm}$

・ロン ・回 と ・ 回 と ・ 回 と

Analyse des données du BH2 Borda (Shom)

Conclusion

Analyse dans un contexte de prévision météorologique

Produits temps-réel - sessions de 30h

2019-03-28 22 / 27

P. Bosser et al.

IWV GPS en mer

Analyse des données du BH2 Borda (Shom)

Conclusion

Analyse dans un contexte de prévision météorologique

Produits temps-réel - sessions de 6h

23/27

Introduction

État de l'art

Analyse des données du BH2 Borda (Shom)

Conclusion

Analyse dans un contexte de prévision météorologique

Produits temps-réel - sessions de 6h

Écarts par session

Par session, biais (\leftarrow) potentiellement important

■ Cependant, écart-type (→) reste inférieur à 2 kg·m⁻²

P. Bosser et al.

IWV GPS en mer

ntroduction	État de l'art 000	Analyse des données du BH2 Borda (Shom)	Conclusion
Plan			
	tion l'art		
Analyse			

◆□→ ◆□→ ◆注→ ◆注→ □注

Résumé & perspectives

- SH M Dretagne Locata en référence
- Potentiel des mesures GNSS en mer pour la météorologie et la climatologie
- Possibilité d'atteindre des niveaux de précision similaires à CORS (incertitude < 2 kg·m⁻²)
- Temps quasi-réel encore ambitieux, mais les résultats sont encourageants (écart-type légèrement supérieur à 2 kg·m⁻² pour sessions de 6h)

・ロン ・回 と ・ ヨン ・ ヨン

IGN

Résumé & perspectives

- Potentiel des mesures GNSS en mer pour la météorologie et la climatologie
- Possibilité d'atteindre des niveaux de précision similaires à CORS (incertitude < 2 kg·m⁻²)
- Temps quasi-réel encore ambitieux, mais les résultats sont encourageants (écart-type légèrement supérieur à 2 kg·m⁻² pour sessions de 6h)
- Méthodologie à éclaircir : multi-constellation, résolution des ambiguïtés, a priori, optimisation du filtrage (logiciel ???)
- Pour la météorologie : Quelle stratégie pour l'analyse en temps quasi-réel ? Quels produits utilisés ? Et surtout... Comment diffuser les données acquises ?
- Pour la climatologie : Quelles données disponibles ? Quelles infrastructures d'analyse, de diffusion ?

・ロン ・回 と ・ 回 と ・ 回 と

Projets connexes

- DIP-NAWDEX (en cours) :
 - Obj : Améliorer la prévision des perturbations atmosphériques, formation des événements intenses dans l'Atlantique Nord.
 - Financement ANR (2018-2020)
 - Analyse des données CORS (1200 stations) + Atalante (en cours)

ROBUSTA3A (en cours) :

- Obj : développement d'un relais de transmission de données GNSS acquises en mer à l'aide d'un nano-satellite
- Financement CNES (programme JANUS) et Fondation van Allen

EUREC⁴**A** (2020) :

- Obj : Étude du couplage convection / nuages / circulation et du rôle des océans.
- Soutien IPSL (IGN) pour la réalisation de mesures GNSS
- Exploitation des données acquises par 3 bateaux de recherche mobilisés pour la campagne (FR, DE)

GEMMOC (en soumission) :

- Obj : développement de méthodes de restitution des IWV à partir de récepteurs GNSS embarqués sur porteur marin en temps différé et en temps quasi réel
- Demande de financement LEFE (2020-2022)

Introduction	État de l'art 000	Analyse des données du BH2 Borda (Shom)	Conclusion
			Bretagne Locean en référence

Merci !

References

Bennitt, G. V. and Jupp, A. (2012).

Operational assimilation of GPS zenith total delay observations into the Met Office numerical weather prediction models. Monthly Weather Review, 140:2706–2719.

Bevis, M., Bussinger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H. (1992).

GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research, 97:15787–15801.

Bock, O., Bosser, P., Pacione, R., Nuret, M., Fourrié, N., and Parracho, A. (2016).

A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period.

Quarterly Journal of the Royal Meteorological Society, 142:56-71.

Boniface, K., C., C., Chery, J., Ducrocq, V., Rocken, C., Doerflinger, E., and Collard, P. (2012).

Potential of shipborne GPS atmospheric delay data for prediction of mediterranean intense weather events. Atmospheric Science Letters, 13:250–256.

El Yahmadi, M. A. (2009).

Traitement et analyse des délais troposphériques issus de données d'un récepteur GPS bifréquence embarqué sur un navire. Master's thesis, ENSG.

Elgered, G., Johansson, J. M., Rönnäng, B. O., and Davis, J. L. (1997).

Measuring regional atmospheric water vapor using the swedish permanent gps network. Geophysical Research Letters, 24(21):2663–2666.

Fourrié, N., Nuret, M., Brousseau, P., Caumont, O., Doerenbecher, A., Wattrelot, E., Moll, P., Bénichou, H., Puech, D., Bock, O., Bosser, P., Chazette, P., Flamant, C., Di Girolamo, P., Richard, E., and Saïd, F. (2019). The AROME-WMED re-analyses of the first Special Observation Period of the Hydrological cycle in the Mediterranean experiment.

Geoscientific Model Developement, 12(7):2657-2678.

Ó

ENSTA Bretagne

References

Atmospheric water vapor and geoid measurements in the open ocean with GPS. Geophysical Research Letters, 32(12):L12813.

References

Shoji, Y., Sato, K., Yabuki, M., and Tsuda, T. (2016).

PWV retrieval over the ocean unsing shipborne GNSS receivers with MADOCA real-time orbits. SOLA, 12:265–271.

Shoji, Y., Sato, K., Yabuki, M., and Tsuda, T. (2017).

Comparison of shipborne GNSS-derived precipitable water vapor with radiosonde in the western North Pacific and in the seas adjacent to Japan. Earth, 69(1):153.

Wang, J., Wu, Z., Semmling, M., Zus, F., Gerland, S., Ramatschi, M., Ge, M., Wickert, J., and Schuh, H. (2019).

Retrieving Precipitable Water Vapor From Shipborne Multi-GNSS Observations. Geophysical Research Letters, 46(9).

Introduction	État de l'art 000	Analyse des données du BH2 Borda (Shom)	Conclusion
			SH M Bretagne Locdan en référence

Calcul de référence

Résolution des ambiguités, RMS, erreurs formelles

æ

Analyse des données du BH2 Borda (Shom)

Conclusion

Calcul temps-réel RMS, erreurs formelles

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣��

Conclusion

SH

METEO FRANCE

ENSTA Bretagne

IGN

Produits temps-réel - sessions de 30h

Position verticale

Outliers	Ν	$b\pm\sigma$ [m]	RMS [m]	MinMax [m]	$N \le \pm 0.2$ m
5.7%	36975	+0.034 \pm +0.099	0.105	[-3.278 ; +3.159]	98.1%

Produits temps-réel - sessions de 6h

Position verticale

Screening	:	4.5%	des	estimées	rejetées
-----------	---	------	-----	----------	----------

Outliers	N	$b\pm\sigma$ [m]	RMS [m]	MinMax [m]	<i>N</i> ≤ ±0.2 m
4.5%	140974	+0.030 \pm +0.130	0.133	[-6.180 ; +1.205]	99.9%
				A D > A	<pre></pre>