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Abstract The availability of high-resolution global digital
elevation data sets has raised a growing interest in the fea-
sibility of obtaining their spherical harmonic representation
at matching resolution, and from there in the modelling of
induced gravity perturbations. We have therefore estimated
spherical Bouguer and Airy isostatic anomalies whose spher-
ical harmonic models are derived from the Earth’s topogra-
phy harmonic expansion. These spherical anomalies differ
from the classical planar ones and may be used in the con-
text of new applications. We succeeded in meeting a num-
ber of challenges to build spherical harmonic models with
no theoretical limitation on the resolution. A specific algo-
rithm was developed to enable the computation of associ-
ated Legendre functions to any degree and order. It was
successfully tested up to degree 32,400. All analyses and
syntheses were performed, in 64 bits arithmetic and with
semi-empirical control of the significant terms to prevent
from calculus underflows and overflows, according to IEEE
limitations, also in preserving the speed of a specific regu-
lar grid processing scheme. Finally, the continuation from
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the reference ellipsoid’s surface to the Earth’s surface was
performed by high-order Taylor expansion with all grids of
required partial derivatives being computed in parallel. The
main application was the production of a 1′ × 1′ equian-
gular global Bouguer anomaly grid which was computed
by spherical harmonic analysis of the Earth’s topography–
bathymetry ETOPO1 data set up to degree and order 10,800,
taking into account the precise boundaries and densities of
major lakes and inner seas, with their own altitude, polar caps
with bedrock information, and land areas below sea level.
The harmonic coefficients for each entity were derived by
analyzing the corresponding ETOPO1 part, and free surface
data when required, at one arc minute resolution. The fol-
lowing approximations were made: the land, ocean and ice
cap gravity spherical harmonic coefficients were computed
up to the third degree of the altitude, and the harmonics of
the other, smaller parts up to the second degree. Their sum
constitutes what we call ETOPG1, the Earth’s TOPography
derived Gravity model at 1′ resolution (half-wavelength). The
EGM2008 gravity field model and ETOPG1 were then used
to rigorously compute 1′ × 1′ point values of surface grav-
ity anomalies and disturbances, respectively, worldwide, at
the real Earth’s surface, i.e. at the lower limit of the atmo-
sphere. The disturbance grid is the most interesting product
of this study and can be used in various contexts. The surface
gravity anomaly grid is an accurate product associated with
EGM2008 and ETOPO1, but its gravity information contents
are those of EGM2008. Our method was validated by com-
parison with a direct numerical integration approach applied
to a test area in Morocco–South of Spain (Kuhn, private
communication 2011) and the agreement was satisfactory.
Finally isostatic corrections according to the Airy model, but
in spherical geometry, with harmonic coefficients derived
from the sets of the ETOPO1 different parts, were computed
with a uniform depth of compensation of 30 km. The new
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world Bouguer and isostatic gravity maps and grids here
produced will be made available through the Commission
for the Geological Map of the World. Since gravity values
are those of the EGM2008 model, geophysical interpretation
from these products should not be done for spatial scales
below 5 arc minutes (half-wavelength).

Keywords Bouguer gravity anomalies · Isostatic gravity
anomalies · Earth’s topography · Spherical harmonics ·
Surface gravity anomalies · Surface gravity perturbations

1 Introduction

The availability of high-resolution global digital elevation
data sets has raised possibility to address in best conditions
the basic question we want to answer: what is the Earth’s
gravitational potential, or gravity field when: (i) the planet is
stripped of all masses above a reference surface (geoid), and
(ii) mass deficiencies below the reference surface are restored
to a given density.

This residual field then contains information on sub-sur-
face density variations.

This problem has for a very long time received sev-
eral solutions, especially by regional or local approxima-
tion. Considering the attraction of neighbouring topographic
masses, mostly in planar geometry (local flat Earth) with
some spherical correction, the computations were based on
numerical integration over finite mass elements with more or
less sophistication. The basics are described in several text-
books—see for instance Heiskanen and Moritz (1967), Torge
(2001). This conventional approach, by which one defines
classical Bouguer anomalies, is a simplified realization of
the mass normalization process described above, where mass
layers are usually approximated in two steps by: (i) flat
plates of finite thickness, infinite extent and uniform density
(Bouguer plate), (ii) volume elements, e.g. pseudo-rectangu-
lar/spherical prisms (tesseroids), to take into account the real
topography of the Earth (deviation from the plates, so-called
terrain correction applied at regional scale). These two steps
are sometimes merged into a single one in which the total
attraction of the whole mass column from the reference sur-
face to the Earth’s surface is directly computed. Moreover, the
modern point of view, corresponding to Molodensky theory
(see Heiskanen and Moritz 1967; and Hofmann-Wellenhof
and Moritz 2005), is to stay with the attraction of the sub-
tracted or normalized masses, at the Earth’s surface; that is to
compute a gravity perturbation over this surface without free-
air correction. In practice, a great number of techniques and
mathematical tricks have been used to improve and speed up
the computational process which becomes heavy as the res-
olution and size of the domain increase. We will not discuss

them here since our approach is very different: it introduces
a new type of anomaly and uses radically different methods.

The present study was triggered by the goal of computing
a global Bouguer map, and by the work of Kuhn et al. (2009),
who define and compute what they call complete spherical
Bouguer gravity anomalies (ΔgCSB) using spherical terrain
corrections over the whole Earth with respect to a local but
full spherical Bouguer shell. Such an anomaly, at any gravity
observation point P of altitude H , involves: (i) the gravita-
tional effect of the Bouguer shell of constant thickness H and
density ρ, that is 4πGρH (twice the value of the usual plateau
term—G being the gravitational constant); and (ii) the spher-
ical terrain correction with respect to the shell, computed
over the whole planet by numerical integration over spheri-
cal volume elements having a size which increases with the
distance to point P . Then the free air correction, atmospheric
correction and normal gravity (at the reference ellipsoid sur-
face) are used to achieve the computation of ΔgCSB. Kuhn
et al. (2009) have computed high-resolution Bouguer gravity
anomalies over Australia only, but it was acknowledged that
the same principles can be applied globally.

Our goal has been to do a similar computation but in one
step and, with some approximation, by replacing the integra-
tion stage by the use of spherical harmonic (SH) models: on
the one hand models of the Earth’s topography parts (lands,
oceans, inner seas, lakes, polar caps) taking into account the
different geometrical situations and different densities, on
the other hand model of the gravity perturbations induced
by the different parts or their normalized counterparts when
appropriate (i.e. the replacement by material of conventional
density). To do so, we used a method which we developed
in a very different context, which aimed at precisely finding
the gravitational spherical harmonic coefficients of a homo-
geneous body (an asteroid, a comet nucleus or a natural
satellite of odd shape) from the spherical harmonic coeffi-
cients describing its shape (Balmino 1994). The theory also
included the case of a body composed of several layers with
different densities and therefore was readily applicable to
the computation of the gravity perturbations due to homo-
geneous matter between two surfaces, which is exactly what
we need here.

We define the spherical Bouguer gravity at the Earth’s
surface by:

gB(P) = g(P) − A(topo) (1)

where g(P) is the measured gravity at point P and A(topo)
is the total attraction (at P) of the topographic masses them-
selves (between the surface and the geoid) or of their sub-
stitutes according to normalization conventions. A(topo) is
computed by taking into account the whole Earth with its
real shape and surface density: topographic masses include
matter above the geoid (and lack of it below the geoid in
some continental areas), bathymetry, ice and lakes.
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The spherical Bouguer gravity anomaly is then defined in
the context of Molodensky theory, as:

ΔgB(P) = gB(P) − γ (Q) (2)

where γ (Q) is the normal gravity at point Q on the tellu-
roid, corresponding to P . Since the Molodensky (surface)
anomaly is Δg(Molod) = g(P) − γ (Q), we have:

ΔgB(P) = Δg(Molod) − A(topo) (3)

In our case, Δg(Molod) is derived from a global Earth grav-
ity model, here EGM2008 (Pavlis et al. 2008) and, following
Pavlis (1998) and Rapp and Pavlis (1990) it is computed as:

�g(Molod) =
[
−∂T

∂r
− 2

r
T

]
Q

+ εproj + εh + εγ (4)

where T = W − U is the disturbing gravitational potential,
with W the Earth’s gravity potential and U the normal poten-
tial (of the dynamic reference ellipsoid). εproj, εh, εγ (respec-
tively, named isozenithal projection correction, and first and
second ellipsoidal corrections) are small, long-wavelength
correcting terms (not exceeding 3, 3 and 100 μGal, respec-
tively) which we here compute from the EGM2008 spherical
harmonic model truncated at degree 60. The precise evalua-
tion on the telluroid of the term depending on T is delicate
if one wants to minimize the computational effort (for very
large data sets or grids)—as will be the case for the compu-
tation of A(topo) from spherical harmonics, and will be the
subject of Sect. 4.3. Equation (3) must be slightly modified
to agree with the actual definition of the reference ellipsoid
which includes the mass of the atmosphere; an atmospheric
correction term δgAC must be added to the gravity anom-
alies. δgAC is approximately a function of the elevation H
with respect to sea level. With H in meters, δgAC is given in
milligal, by (NGA 1999):

δgAC = 0.87 exp[−0.116(H/1,000)1.047] if H > 0

δgAC = 0.87 if H ≤ 0 (5)

To compute A(topo) the core of the work has been:

• to perform spherical harmonic analysis (SHA) of the
heights of the Earth’s topography–bathymetry compo-
nents from the ETOPO1 database (Amante and Eakins
2009) and other databases for inner seas and lakes, such
as ILEC (http://wldb.ilec.or.jp/), at 1′ equiangular reso-
lution, plus SHAs of the second and third powers of these
height values (as will be shown);

• then to transform the obtained SH coefficients into gravi-
tational SH coefficients, thus producing what we call the
Earth’s TOPography derived Gravity model at 1′ resolu-
tion, or ETOPG1;

• to perform spherical harmonic synthesis (SHS) of the
gravity perturbations produced by ETOPG1 at the Earth’s

surface [SE], defined by the lower limit of the atmosphere
and based on ETOPO1 and additional data, on a world-
wide 1′ × 1′ grid;

• to perform 1′ ×1′ SHS of the Molodensky gravity anom-
alies on [SE] associated with EGM2008, so as to finally
produce a global spherical Bouguer gravity anomaly grid
(and map).

In a similar manner, we derived the SH gravity coefficients
of the compensation of all topographic components for an
Airy isostatic model with fixed compensation depth, and we
produced a global 1′ × 1′ grid of the gravity corrections on
[SE], and a final grid of the isostatic anomalies.

All SHAs and SHSs were done up to degree and order
10,800 corresponding to the 1′ resolution (half-wavelength).
However, for the EGM2008 surface gravity anomalies the
model limitations (maximum degree and order 2,160, plus
some terms up to degree and order 2,190) were obviously
applied.

In a first part we will recall the theory; subsequently we
will give its application to our case, emphasizing the han-
dling of the different Earth’s surface components. Then we
will explain our strategy with respect to several challenging
problems and describe the adopted solutions, especially con-
cerning the SHA and synthesis of models of very high degree
and order (examples will be given with verification tests and
error analysis); in this part we will also address the problem
of precisely and efficiently computing a geodetic function at
the Earth’s surface, i.e. at (a large number of) points with dif-
ferent altitudes, and we will give a method based on Taylor
expansions of high order. These critical problems all being
solved, the next part will show an example over the Morocco–
South of Spain area, and comparisons with results of Kuhn
(private communication 2011) using the approach of Kuhn
et al. (2009) will be given. For sake of completeness, the
derived Airy isostatic anomalies will also be presented over
the same area (Morocco, in short). Finally we will present
the worldwide 1′ × 1′ grids and maps of spherical gravity
perturbations computed from our ETOPG1 model, of spher-
ical Bouguer anomalies derived from the EGM2008 surface
gravity anomalies and from the ETOPG1 perturbations, and
of Airy isostatic gravity anomalies.

2 Theory

It is based on the expression of Newton’s integral in spheri-
cal harmonics, which has been addressed by many authors,
e.g. Rummel et al. (1988); Balmino (1994); Wieczorek and
Phillips (1998); Tsoulis (2001); Ramillien (2002); Kuhn and
Featherstone (2003).

We briefly recall the basics of the method, from our ear-
lier work (Balmino 1994). We want to find the gravitational
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SH coefficients of a homogeneous body of density ρ from a
SH model of its shape. In a reference coordinate system [R]
fixed in the body, the shape is described by a truncated series
S giving the radius vector r as a function of the latitude ϕ

and longitude λ:

r(ϕ, λ) = R0(1 + S) (6)

where R0 is a reference length and

S =
J∑

j=0

j∑
q=0

(A jq cos qλ + B jq sin qλ) P jq(sin ϕ)

=
J∑

j=0

j∑
q=− j

T jq Y jq(ϕ, λ) (7)

In the case of a planetary topography, H , measured with
respect to a sphere of radius R0, we simply have H = R0S.

In Eq. (7) the P jq are the Legendre polynomials (q = 0)
and associated functions (q > 0) of the first kind, with the
usual geodetic normalization (Heiskanen and Moritz 1967),
the Y jq are defined by:

Y jq(ϕ, λ) = P jq(sin ϕ) eiqλ (8)

Y j,−q = (−1)qY
∗
jq (9)

with q ≥ 0, i = √−1, and where the superscript * indicates
the complex conjugate; coefficients A, B and T are normal-
ized according to the P

′
s and Y

′
s and are related by:

T jq = (A jq − i B jq)/(2 − δ0q)

T j,−q = (−1)q T
∗
jq (10)

Let us note that we may have a T 00 term if 〈r〉 	= 0 (zero
mean over the sphere).

On the other hand the gravitational potential of the body
is also represented by a spherical harmonic series, written at
each point P as:

U = G M

r

l=L∑
l=0

(
R

r

)l +l∑
m=0

(Clm cos mλ + Slm sin mλ)

×Plm(sin ϕ)

= G M

r

l=L∑
l=0

(
R

r

)l +l∑
m=−l

K lm Y lm(ϕ, λ) (11)

with G: the gravitational constant, M : mass of the body, R:
reference length (usually close to the body mean radius),
Clm, Slm and K lm : dimensionless harmonic coefficients of
degree l and order m, and r, ϕ, λ are the spherical coordinates
of the point P in the reference system [R]. The Clm, Slm, K lm

and K l,−m coefficients (m ≥ 0) are related to each other by
equations similar to (10). The series for U is in principle

infinite—even if S is finite, but is truncated at degree L in
practice. Here the K lm coefficients are given by:

K lm = ραlm

∫∫
σ1

⎡
⎢⎣

r(ϕ,λ)∫
0

rl+2 dr

⎤
⎥⎦ Y

∗
lm(ϕ, λ) dσ1 (12)

where σ1 is the unit sphere and αlm = 1/
[
(2 − δ0m)(2l + 1)

M Rl
]
.

In short, we will note T jq = (A jq , B jq)shape, and K lm =
(Clm, Slm)gravit. Our goal is to find the K lm’s from the
T jq coefficients. The rigorous analytical solution (Balmino
1994), is quite heavy; it requires the introduction of n − j
coefficients (a generalization of the Clebsch–Gordan, or 3− j
coefficients, Wigner 1959) for the integrals of products of
any number of surface spherical harmonic functions. Practi-
cal computations were performed up to degree and order 180
and for integrals of products of up to 72 functions (using a “in
house” extended precision arithmetic library). We encoun-
tered numerical problems beyond those limits—which are
insufficient (by far) for our concern. It is much easier to adopt
the numerical solution which is recalled below.

Using Eqs. (6), (7) and (12), we find:

K lm = 4πR3
0

(2l + 1)M
ρ

(
R0

R

)l l+3∑
k=0

γ k
l T

(k)

lm (13)

with

T
(k)

lm = [4π(2 − δ0m)]−1
∫∫

σ1

Sk(ϕ, λ) Y
∗
lm(ϕ, λ) dσ1 (14)

and γ k
l = 1

l+3

(
l + 3
k

)
; T

(1)

lm is obviously equal to T lm . We

note that the summation on k stops at l + 3 for each degree

l. The T
(k)

lm ’s for k > 1 correspond to coupling (products)
of the coefficients T jq (i.e. all possible combinations of k
products).

The T
(k)

lm are derived by successive SHAs of the Sk func-
tion mean values computed on regular (equiangular) grids by
SHS. Integrals of SH functions are computed analytically or
numerically according to the degree and order (see Sect. 5.1).
From this general expression we can derive formulas for dif-
ferent cases.

(a) Body composed of several homogeneous layers

There are N +1 layers. The radius vector of the outer sur-
face (�ν) of the νth layer (ν = 0, 1, . . . N ) is modelled by:

rν = Rν[1 + Sν(ϕ, λ)] (15)

with rν+1 < rν(∀ϕ, λ), and:

Sν(ϕ, λ) =
∑
j,q

T
ν

jqY jq(ϕ, λ) (16)
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As before we define:

T
ν(k)

lm = [4π(2 − δ0m)]−1
∫∫

σ1

Sk
ν (ϕ, λ) Y

∗
lm(ϕ, λ) dσ (17)

and also �ρν = ρν − ρν−1,(ρ−1 = 0) with ρν the density of
layer ν. Introducing ρ, the mean density of the body, we have:

K
gravi
lm (N + 1 layers) = 1

ρ

3

2l + 1

N∑
ν=0

�ρν

(
Rν

R0

)3

×
(

Rν

R

)l
{

l+3∑
k=1

γ k
l T

ν(k)

lm

}
(18)

This equation is fundamental for deriving the Airy isostatic
potential coefficients (with N = 1 and R1 = R0 − D, D
being the depth of compensation).

(b) Case of one layer, with density ρ0, limited by two complex
surfaces (�0), (�1)

The radius vectors of these surfaces are defined by
Eq. (15). In addition, we here assume that the layer is thin
with respect to the size of the body and we take R1 = R0,
which usually implies (a) nonzero T

ν

00 term(s). Then:

K
gravi
lm (one layer) = 3

2l + 1

ρ0

ρ

(
R0

R

)l l+3∑
k=1

γ k
l

×[T 0(k)

lm − T
1(k)

lm ] (19)

From here we define different types of spherical harmonic
coefficients representing the potential of a layer of matter,
now called topography: (i) rigorous Bouguer potential coef-
ficients when (�1) is the Earth’s geoid, for instance defined
from a global gravity field model; (ii) ellipsoidal Bouguer
potential coefficients when (�1) is an ellipsoid (of revolu-
tion); and (iii) spherical Bouguer potential coefficients, when
(�1) is a sphere of radius R0, given by:

K
gravi
lm (topo/sphere) = ρ0

ρ

3

2l + 1

(
R0

R

)l

×
{

T lm +
l+3∑
k=2

γ k
l T

(k)

lm

}
(20)

The latter is the type of coefficients which will be computed
and used in this paper—with the possibility of applying long
wavelength ellipsoidal corrections. In the last equation, the
first term (k = 1) has been isolated and the superscript
dropped; this term is the usual single layer approximation
in the transformation T jq → K lm .

(c) Case of one layer made of several parts with different
densities

An elegant way of dealing with lateral variable density is to
introduce a surface density function (Kuhn and Featherstone
2003). Instead we adopted the following classical approach.
We perform the above transformation (Eq. 20) for a topo-
graphic layer made of several parts of different densities cor-
responding to the various Earth’s surface elements and their
normalization. If ρ∗

ω is the true, or normalized density, of a
given component extending over a domain Dω of the Earth,
the spherical Bouguer coefficients for all components are (in
shorter notation):

K lm(topo)=
∑
ω

ρ∗
ω

ρ

3

2l+1

(
R0

R

)l
{

T
ω(1)

lm +
l+3∑
k=2

γ k
l T

ω(k)

lm

}

(21)

The T
ω(k)

lm harmonics are computed by SHA of topographic
heights over the convex envelope of the Dω domain solely,
defined by meridians and parallels which bound the domain,
and by setting the analyzed function to zero inside the enve-
lope and outside the domain (a tapering function has been
applied in some cases). Equation (21) will be truncated (as
to be shown later) at kmax = min(l +3, K ) and will be called
transformation up to the Kth power of the topography H,
which indeed means that we take into account H/R0 up to
the power K . We pay a special attention to the degree and
order zero term, given exactly by:

K
gravi
00 (N parts) = 3

ρ

N∑
ω=1

ρ∗
ω

[
T

ω(1)

00 + T
ω(2)

00 + 1

3
T

ω(3)

00

]

(22)

It generalises the concept of spherical Bouguer shell, and
requires to carry the transformation up to K = 3.

Finally, and as shown in the following section, for some
components of the Earth’s surface this procedure must be
applied twice to account for the correct removal of some
parts and normalization of others.

3 Application

We apply the above approach to the following components of
the Earth’s surface (Table 1) where all elevations, taken from
ETOPO1 or ILEC (or other data source in some cases) are
given with respect to sea level and assumed to be orthometric
heights:

(a) all lands above or below sea-level (except the ice caps),
(b) all oceans,
(c) closed seas and lakes,
(d) ice caps. Ice shelves were considered but not treated

separately: assuming they are purely floating ice (ignor-
ing the mechanical constraints at the places they are
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Table 1 The different topographic components analyzed: all from
ETOPO1 except closed seas and lakes (ILEC database) and ice shelves
(US National Snow and Ice Data Center)

Components Contents

Lands with H > 0 All—except polar caps (according to
ETOPO1 data set)

Lands with H < 0 Chott Algeria-Tunisia, Qattara depression,
Death Valley, Jordan Valley,
Netherlands (part), Turfan depression

Oceans All

Closed seas Aral sea, Caspian sea, Dead sea

Lakes Baikal, Balkach, Bear lake, Constance,
Erie, Eyre, Huron, Ladoga, Leman,
Malawi/Nyassa, Maracaibo, Michigan,
Onega, Salton, Slaves (Can.), Superior,
Tanganyka, Tiberiade, Titicaca,
Victoria, Winnipeg, Yssyk-Koul

Ice caps • Over Greenland

• Over Antarctica + ice shelves (Ross,
Ronne-Filchner, Larsen, Amery)

anchored on the bed-rock), their gravitational effect can
be ignored.

Data errors were detected in some parts (especially the Arctic
and Antarctic areas); they could be corrected under simple
assumptions.

Specific polygons and grids were built to precisely delin-
eate all different areas (e.g. lakes and seas—with their free
surface altitude).

We define:

• t the elevation of the solid rock topography [called bed-
rock in case (d)]; we have t < 0 in case (b), t > 0 or
t < 0 in all other cases,

• t0 the elevation of the closed sea or lake surface in case
(c) (it may be >0 or < 0), or of the surface ice (t0 > 0)
in case (d),

• ρc the crust density, taken here equal to 2, 670 kg/m3,
• ρm the upper mantle density, equal to 3, 270 kg/m3,
• ρw the ocean density, equal to 1, 027 kg/m3,

• ρI the ice density, equal to 917 kg/m3,
• ρsl the density of water for inner seas and lakes; it

has been assigned a constant value for a given entity
although some are known to have parts with different
densities,

• ρ∗ = ρsl in case (c), ρ∗ = ρI in case (d):

Figure 1 illustrates cases (c) and (d)—other cases are well
known.

3.1 Digital terrain model (DTM)-induced gravity
disturbance (DIG)

This is the gravity field induced by the topographic-water-
ice masses and their normalization, computed from a given
DTM, here ETOPO1.

The computation of such a field to produce Bouguer anom-
alies implies in each case the following “removal” of surface
densities (in the algebraic sense—it is indeed an addition in
some configurations):

(a) t ρc

(b) t (ρc − ρw)

(c), (d) (t0 − t)ρ∗ and tρc.

Equation (21) is applied in each case. Note that this is
the correct sign for these quantities when computing the
K lm(topo), i.e. the coefficients of the DTM-induced grav-
ity disturbance field itself.

3.2 Airy isostatic compensation

In this well-known model the topographic constructs float on
the upper mantle, a denser under-layer of constant densityρm ;
therefore we have roots or anti-roots under the topographic
components.

Fig. 1 Geometry of considered layers for closed seas and lakes and for ice caps, and of Airy isostatic model for these cases. t1 is the elevation of
the root (or anti-root) at compensation level (of depth D)
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Let us further define:

• �ρ0 = ρc in case (a), �ρ0 = ρc − ρw in case (b)
• �ρ1 = ρm − ρc

• �ρ∗ = ρc − ρ∗ where, as before, ρ∗ = ρsl in case (c),
ρ∗ = ρI in case (d)—cf. Fig. 1.

Then, adopting a depth of compensation D, that is a level
at which the pressure induced by all surface loads is con-
stant, we can compute the elevation t1 of the roots or anti-
roots, measured with respect to the sphere of radius R1 =
R0 − D:

• cases (a) and (b): t1 = −t
�ρ0

�ρ1

(
R0

R1

)2

(23)

• cases (c) and (d): t1 = −
[

t
�ρ∗

�ρ1
+ t0

ρ∗

�ρ1

] (
R0

R1

)2

(24)

The factor (R0/R1)
2 accounts for the ratio of the sur-

face elements sustained by the same solid angle, at lev-
els R0 and R1, which enter into the equilibrium equation;
it is equal to one in planar geometry. Equation (23) was
already derived by Rummel et al. (1988). Using Eq. (18) with
solely the ν = 1 term (to isolate the compensation part), we
find the corrections to the gravitational SH coefficients due
to t1:

• for cases (a) and (b), a formula in which the T
(k)

lm enter
directly, thus not requiring any additional SHA:

�K lm(Airy) =
oceans∑
lands

[
3

2l + 1

�ρ0

ρ

(
R0

R

)l

×
l+3∑
k=1

γ k
l (−1)k

(
�ρ0

�ρ1

)k−1

×
(

R0 − D

R0

)l+3−3k

T
(k)

lm

]
(25)

• for case (c) or (d):

�K lm(Airy) = − 3

2l + 1

�ρ1

ρ

(
R0 − D

R0

)3 (
R0 − D

R

)l

×
l+3∑
k=1

γ k
l T

1(k)

lm (26)

with T
1(k)

lm being the SH coefficients of t1 as given by (24)
and obtained by SHA.

In all cases, with the signs adopted in the last two
equations, the �K lm coefficients must be added to the
Bouguer anomaly field coefficients to obtain the isostatic
anomalies.

4 Challenging problems and strategies

As we have seen it, the theory is fairly simple and adopting
the numerical approach makes the problem tractable, pro-
vided that we meet some challenges related to the desired
resolution of the representation, which we want to match the
information contents in the ETOPO1 database.

4.1 The meaning of spherical DIG potential coefficients

We made several approximations from which geometrical
origin is shown in Fig. 2.

Rigorously one should analyze OS/R0 and OG/R0

(Fig. 2a) and their successive powers to get the SH coef-

ficients T
0(k)

lm and T
1(k)

lm according to formula (19). Firstly
we ignore the geoid height, because: (i) its maximum value
(∼±100 m) is much smaller than H in most places on Earth;
(ii) the computation of the terrain effect is then made inde-
pendent of the geoid model; (iii) it makes the computational
effort smaller; (iv) comparisons with other approaches in
spherical geometry are easier; (v) the impact of any geoid
model may be evaluated subsequently. Secondly, H being
given as a function of the geodetic latitude � (and longitude
λ), we map H onto the sphere with the geocentric latitude ϕ

(properly converted from �) instead of ϕ′ (Fig. 2b). This is
justified by the fact that (Fig. 2c): ϕ′ − ϕ ≈ f sin 2�H/R0

is always <2.10−4 degree (0.8 ′′) in absolute value, and also:
|H ′ − H | ≈ |H |(� − ϕ)2/2 < 0.06m. The analyses of all
functions (H/R0)

k being done in such spherical approxima-
tion, the synthesis (computation of grids) will be performed in
accordance. However, it may be interesting to quantify it with
respect to the ellipsoidal approximation. Assuming H ′ = H
and ϕ′ = ϕ (Fig. 2d), the correction (to be added to the
spherical DIG potential coefficients) is, following Eq. (12):

δK lm = ραlm

∫∫
σ1

⎡
⎢⎣

RE (ϕ)+H∫
RE (ϕ)

rl+2 dr −
R0+H∫
R0

rl+2 dr

⎤
⎥⎦

×Y
∗
lm(ϕ, λ) dσ1 (27)

The difference of the two integrals is:

�l =
l+3∑
k=1

γ k
l [Rl+3−k

E − Rl+3−k
0 ]Hk (28)

where one may take RE (ϕ) = R0(1−ε2 sin2 ϕ+ε4 sin4 ϕ−
· · · ) with sufficient accuracy and ε2, ε4 being given in terms
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Fig. 2 Approximations made
in the analysis of the topography
and the derivation of spherical
DIG potential coefficients. a
Given H(ϕ, λ), GS should be
analyzed (for rigorous DIG
coefficients); b H is mapped on
the sphere; c the difference
H − H ′ can be neglected (h is
introduced in the context of
Sect. 4.3); d origin of the
ellipsoidal correction
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of the reference ellipsoid second eccentricity e′, or its flat-
tening f (ε2 = 1

2 e′2 ≈ f ; ε4 = 3
8 e′4 ≈ 3

2 f 2).
H is written H = R0

∑
j,q T jqY jq(ϕ, λ) and cor-

rections are then obtained by transforming the products
sin2 ϕ Y jq(ϕ, λ) and sin4 ϕ Y jq(ϕ, λ), and using the orthog-
onality property of the Y jq(ϕ, λ) functions (Balmino 2003).
We only give here corrections of first order in f and first and
second order in H/R0; we write δK lm = δ1 K lm + δ2 K lm

with:

δk K lm = −(l + 3 − k)ε2[al−2,m T
(k)

l−2,m + blm T
(k)

l,m

+cl+2,m T
(k)

l+2,m] (29)

The a, b, c coefficients are given by:

ank = 1

2n + 3

×
[
(n − k + 1)(n − k+2)

2n+1

(n + k + 1)(n + k + 2)

2n + 5

]1/2

cnk = 1

2n−1

[
(n−k)(n−k−1)

2n−3

(n + k)(n + k − 1)

2n+1

]1/2

bnk = 2n(n + 1) − 2k2 − 1

(2n − 1)(2n + 3)
(30)

(they are =0 whenever n < 0 or k > n).
Of greater interest are the long wavelength corrections

which we have computed in parallel to the correcting terms
considered for the surface gravity anomalies (see Sect. 1).
They will be shown later on together with other results.

4.2 Spherical harmonic functions of high degree and order

There has been an increasing need in resolution and precision
of SH representations in the last years, which has generally

followed our increase of knowledge of the Earth’s topogra-
phy or other geophysical or geographical functions. SH func-
tions need to be computed up to degree and order (d/o) 10,800
in the present work, which corresponds to the 1′ resolution
(half-wavelength) of ETOPO1, and soon to d/o 21,600 if one
wants to represent the data sets which become available at
the 30′′ resolution (∼1 km). The problem which plagues most
algorithms is of numerical nature and is due to the Institute
of Electrical and Electronic Engineers’ (IEEE) standard for
binary floating-point arithmetic; this limits the range of all
real numbers which can be represented on current computers
to ∼10−305 to ∼ 10+305. In particular, the computation of
all SH functions for high d/o cannot be done without several
tricks, which may be costly.

There is no problem with the Legendre polynomials, only
with the associated Legendre functions (ALF): Plm(x), x =
sinϕ, m > 0. Writing these as ym Hlm(x), where y = cosϕ
and Hlm(x) = polynomial of degree l − m, the problem is
known to come from both terms and is exemplified in Fig. 3a
for l = 21,600 and on Fig. 3b for m = 3,600 (computations
have been done with a special in-house library developed by
the first author for demanding celestial mechanics applica-
tions).

Figure 3a shows that Plm(x) becomes nonsignificant
above some maximum order, a phenomenon used by Jekeli
et al. (2007)—see below. On Fig. 3b it is clear that the Hlm’s
increase regularly with l before becoming significant, then
oscillate around a stable value; and the Plm’s behave simi-
larly (starting at ∼cos mϕ), which we will use in our algo-
rithm.

When using recursive relations on the Hlm(x), as it has
become customary in geodesy, usual tricks, e.g. Wenzel sin-
gle normalization (1998), or Horner’s schemes (in cos ϕ) on
partial sums such as in Holmes and Featherstone (2002),
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(b) Order fixed : m = 3600 ; ϕ = 75°

Fig. 3 Behaviour of the Legendre associated functions Plm(x), and their components cosmϕ and Hlm(x), at 75◦ North latitude: a for degree
21,600 and all orders; b for order 3,600 (cosmϕ = 10−2,113) and degrees up to 21,600

do not work at such level. Use of specialized library is an
alternative but is too time consuming for operational situa-
tions. A breakthrough was made recently (Jekeli et al. 2007)
which started from the recognised fact that the meaningful
ALFs at a given latitude and for a given degree follow a
semi-empirical rule which allows to safely neglect more and
more terms—indeed to limit the order of the expansion, as
|ϕ| increases (cf. Fig. 3a), to mmax(ϕ, l) = l cosϕ + C (C
is an empirical constant depending on the spectrum of the
studied function); this circumvents all numerical problems
provided that one makes use of recursive formulas for the
Plm(x) themselves with fixed degree (which are in principle
unstable near the poles). Based on Fig. 3b, our approach has
been to modify Jekeli et al.’s strategy by working by order—

therefore by converting their limiting criterion: for a given
latitude ϕ and fixed order m, we retain the terms of degree
l > l0(m) − D(m, ϕ), where l0(m) is derived from Jekeli
et al’s rule (except near the poles where we adopted a dif-
ferent formulation) and D is an empirical function (Fig. 4).
By computing the Hlm(x) by recursive formulas with fixed
order (stable close to poles) we take advantage of the Partial
Sums-Longitude Recursion (PSLR) technique for the SHS
of equiangular grids (Bosch 1983) and its dual formulation
(LRPS) in SHA (Balmino 2003)—all this in view of the exist-
ing software developed along many years. Besides we can
retain 64 bits arithmetic, though making verifications in 128
bits, for optimization purposes (on small computers), with-
out loosing precision near the poles. The drawback is that
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Fig. 4 Example of Jekeli et al. ’s (2007) criterion transposed to the case
of associated Legendre functions of fixed order and variable degree. ϕ

being fixed, Plm(sin ϕ) increases regularly with l, up to l ∼ l0(m), then

oscillates around a stable value. The significant degrees are retained
above lmin(m) = l0(m) − D(m, ϕ) where D is an empirical function

we have to compute some intermediate values of the Hlm(x)

which are out of the IEEE range but necessary for starting
the scheme. The core of the algorithm is described in appen-
dix A and is based on the idea of Wenzel (1998); it consists
in an iterated re-normalization of the Hlm(x) as l increases.
Finally, depending on the maximum degree and latitude, we
apply Horner’s schemes in cos ϕ and (or) with respect to the
normalization factor.

4.3 Precise and efficient computation of a geodetic function
at the Earth’s surface

The Bouguer correction, or the isostatic one, is a gravity per-
turbation δg = −∂T/∂r and must be computed at the Earth’s
surface [SE], that is at variable altitude for each point. This
hampers the application of fast techniques (such as PSLR) in
SHS. The problem is general and we must question ourselves
on the accuracy of usual methods for gridding values of any
geodetic function on [SE] from a high d/o SH model, such
as the surface gravity anomalies—for instance derived from
a global model like EGM2008.

Most of the time, the function is gridded on the ellipsoid,
then upward (or downward) continued (using 1st, 2nd,. . .
derivatives—also evaluated on the same grid). This is hardly
sufficient in high mountains, even for expansions up to 2,160
(2190) like in EGM2008 as we are going to see it. First,
all altitudes (H) of ETOPO1 and altitudes of the lakes and
closed seas are converted to ellipsoidal altitudes (h) using
EGM2008. The surface of the oceans is assumed to coincide
with the geoid. Therefore, [SE] is referred to the EGM2008
ellipsoid. For surface (Molodensky) gravity anomalies �g

the computation is done on the telluroid and we assimilate
the ETOPO1 elevations to normal altitudes, equal to zero
over the oceans.

The rigorous calculation of δg(S) or �g(S) is too heavy,
since it requires to recompute the ALFs at each point S (see
Fig. 2c), but it has been done over limited mountainous areas
for verification. We may adopt a semi-rigorous method: we
already noted that the latitude difference ϕ − ϕ′ remains
quite small even for significant altitudes (for instance it is
0.0001208◦ at 4,000 m and latitude ϕ = 45◦). Therefore the
ALFs need not be recomputed at each grid point but solely
once for each parallel (but the exact radius vector value at
each point S is used). We have inter-compared these methods
for computing �g, also with the upward continuation from
the ellipsoid using Taylor expansions of order 1 and order 2,
over a 2◦ ×2◦ part of the Atlas mountains in Morocco where
H ranges from 134 to 3,785 m, and using EGM2008. Results
are given in Table 2.

Obviously the rigorous method is very costly. The semi-
rigorous method works very well in terms of precision and
can be taken as reference. The Taylor expansions are not
precise enough at this level. Looking at the first (radial)
and second derivatives of �g(�g1 and �g2), it appears
that these terms, evaluated with EGM2008, are unrealisti-
cally large over the highest mountain summits (<5% of
the area): �g1 reaches −0.492 and 0.376 mGal/m (this
is greater than the free-air gradient !) and �g2 ranges
from −5.0610−4 to +5.4910−4 mGal/m2; elsewhere �g1

is ∼0.01 mGal/m and �g2 ∼ O(10−5) mGal/m2. Con-
sequently we experimented more with the semi-rigorous
method but found that it was costly at high resolution (1′ ×1′
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Table 2 Comparison of different SHS methods: 5′ × 5′ grids of surface gravity anomalies (in mGal) over part of the Atlas mountains, from
EGM2008 and elevation data set DTM2006

Method Min. value Max. value r.m.s. differences (mGal) CPU timea

(1) Rigorous −41.39 249.12 – 761

(2) Semi-rigorous −41.39 249.05 (2)–(1): 0.004 73

(3) Taylor 1 −41.30 237.02 (3)–(2): 4.783 10

(4) Taylor 2 −41.39 255.30 (4)–(2): 2.070 16

a IBM Power 5 (1.9 GHz) processor—time in seconds

Table 3 Computation of 1′ × 1′ grids of δg at degree and order 10,800
by the semi-rigorous method; comparison of CPU time over areas of
different sizes (IBM Power 5 (1.9 GHz) processor)

Area Latitude extension Longitude extension CPU time (sec)

Everest 1◦ 2◦ 7,363

France 9.5◦ 13.5◦ 247,301

Morocco 11◦ 12◦ 316,902

grids with d/o 10,800) over large areas (see Table 3—
with some anticipation on the Bouguer gravity field model,
ETOPG1, which we obtained from ETOPO1 and other data,
and which will be described in Sect. 5). Although computa-
tions over the whole Earth could be done with it, we decided
to re-visit the Taylor expansion approach to save computer
time.

Any degree l component of a geodetic functional has
the factor (a/r)l where a is a reference length (close to
the Earth’s equatorial radius). We want to study the conver-
gence of the following Taylor expansion of order N around
r0 and for various values of r (see Fig. 2c, with r = OS and
r0 = OS0):

(a

r

)l =
(

a

r0

)l

+
N∑

k=1

1

k!
[
∂k(a/r)l

∂rk

]
r=r0

(r − r0)
k (31)

We test the convergence in spherical approximation; we
expand (a/r)l with r0 = a, r = a + h, around h = 0, that
is:

(a

r

)l = 1 +
N∑

k=1

(−1)k

k! �k
l

(
h

a

)k

(32)

where �k
l = ∏k−1

j=0 (l + j).
Results, as shown on Fig. 5, are striking: one needs to go

to very high orders N as the elevation increases, all the more
as the degree increases too.

Those findings are for individual terms, and may be tem-
pered by considering the (decreasing) values of the function
SH coefficients. Also one has to weigh the performances
of the method with respect to the semi-rigorous approach.

Indeed we have been able to implement the simultaneous
computation of a geodetic function and its radial derivatives
of high order, and the final summation at grid nodes, in a
quite efficient way. Details are given in Appendix B. Then
we have been able to compare the two approaches. Antic-
ipating once more on the obtained ETOPG1 model (see next
section) we have computed grids of gravity perturbations δg
on [SE] over several areas and for varying orders N of the
Taylor expansion (Table 4).

The conclusions are:

• CPU time t is clearly linear in N : for example in the case
of Everest t ≈ 1,750 + 11.5N ; but it does not increase
much with N (cf. France area);

• the computer time saving with respect to the semi-rigor-
ous method is more than an order of magnitude over large
areas;

• N = 40 will ensure a precision always better than
∼0.1 mGal (worst case over Everest) and certainly much
better (few microgals) almost everywhere on Earth.

Therefore Taylor expansion with N =40 has been adopted
for all subsequent SHS of grids.

5 Main results

5.1 Analysis of the Earth’s topography

The SH coefficients T
(k)

lm are derived by a standard quadra-
ture method applied to 1′ × 1′ equiangular mean values, and
accelerated by the Longitude Recursion-Partial Sums algo-
rithm (LRPS, Balmino 1994). Integrals of ALFs are com-
puted in different ways according to the order m and the
maximum degree L: the method of Gerstl (1980) is applied
up to d/o 1,800 or above for low orders, then a modifica-
tion of it (Balmino 2003) is used up to d/0 2,700 or above
for low m (with one initial normalization); beyond those
limits, numerical Simpson method is applied (with subdi-
vision of the integration interval when necessary) on the
ALFs computed according to Appendix A. De-smoothing
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Fig. 5 Investigation on the
Taylor expansion order required
to compute (a/r)l at the Earth’s
surface by upward continuation
from the ellipsoid. a Degree
l = 2,160; b degree l = 10,800
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Table 4 Computation of gravity perturbations δg with full ETOPG1 model (lmax = 10,800) at ETOPO1 points (1′ × 1′ grids): (i) by Taylor
expansion; (ii) by semi-rigorous method

Area 

⇓⇓

lat. min/max 
long.min/max

N
(Taylor)

min/max diff. 
with semi-rig. method 

(mGal) 

CPU 
time
(sec) 

CPU time 
semi-rig.method  

(sec)

Everest 

 
27.5°/ 28.5° 
86.0°/ 88.0° 

30 
35 
40 
60 

– 4.27 / + 39.51 
– 1.20 / + 23.74 
– 0.13 / + 0.004 

– 4.10–7/ + 1.10– 7 

2094 
2145 
2205 
2438 

7363 

France 42.0°/ 51.5° 
– 5.0°/ 8.5° 

20 
30 

– 1.16 / + 0.06 
– 3.10–5/ + 3.10– 5  

14525 
15696 

247301 

Morocco 28.0°/ 39.0° 
– 12.0°/ 0.0° 

     30 – 5.10–7/ + 5.10– 7  20391 316902 

Comparison of performances for various orders N
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Fig. 6 Results of analysis of the whole Earth topography (land topo.
and oceans/lakes bathymetry) from ETOPO1: square root of SH coef-
ficients degree variances (in meter)

factors based on Meissl–Pellinen coefficients (Jekeli 1981)
are finally introduced.

Figure 6 shows the behaviour of the SH coefficients (here
multiplied by R0) resulting from the analysis of ETOPO1
data set. An empirical law: A/ l1.882 fits well with these spec-
tral components.

We then look at the magnitude of the SH harmonics of the
kth power of the topography. Figure 7 shows their dimension-
less spectral components; at first glance one would decide
that going beyond k = 3 is superfluous (Fig. 7a), but the

gravitational contribution of the T
(k)

lm must be weighted by
γ k

l (Fig. 7b): higher-order terms (k > 1) become much more
important at resolution higher than ∼7 km(l > 2,800 =
l0); this contradicts a statement of Wieczorek and Phillips
(1998) on the decrease of these terms. This might be also

Fig. 7 Spectral behaviour of

the SH coefficients T
(k)

lm for the
lands only (excluding lakes,
closed seas and ice covered
parts) up to k = 3. a Sk stands
for the kth power of the land
topography; b The coefficients

T
(k)

lm are weighted by γ k
l , and

shown with respect to the
contribution to topography,
r.m.s.(δHl ), of harmonics of
degree > l
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Fig. 8 Morocco–South of Spain-ocean area, selected for many tests and comparisons in this study. Topography is from ETOPO1; values are
between −5, 247 and 3,771 m

true for k > 3 (which we have not investigated). However,
Fig. 7b also shows that the contribution to topography, r.m.s.

(δHl) = R0∗ r.m.s.[T
(1)

lm ], of those terms of degree > l0 is
rather small. This is why we decided to truncate expansion
(13) at k = 3 at most; this is in agreement with Wieczorek
(2007). Nevertheless this remains, at this stage, an empiri-
cal approximation which demands external comparison (see
Sect. 6).

Next we investigated the precision of our SHA of the
topography, by recomputing (by SHS to d/o 10,800) 1′ × 1′
mean values and comparing them with the original ETO-
PO1 mean values, to quantify the error on the DTM-induced
gravity field—which we do in Sect. 5.2. We did it for many
areas on Earth; the largest differences appear over the Hima-
layas (25◦N to 40◦N, 70◦W to 95◦W) with: min = −196 m,
max = +167 m, r.m.s. = 12.8 m. We then selected an area
which we found quite representative of the Earth’s relief in
terms of topographic features and values: Morocco–South of
Spain (Morocco area in short). It has mountainous and flat
parts, significant bathymetry and its topography ranges from
−5, 247 to +3,771 m (Fig. 8). It will be used subsequently
for testing several steps of our approach.

The evaluation of the precision of our SHA–SHS proce-
dures over this area (Fig. 9) shows acceptable differences,
although geographically correlated: differences are larger
over highest and rough topography (Fig. 9a) as could be

intuitively expected; this is confirmed by a close look at a
West–East 200-km long section which crosses rough topog-
raphy and then a more gentle area (right of Fig. 9b) where
smaller differences are visible. We call this error of repre-
sentation, which may be attributed to both the SHA and the
SHS which are approximations of exact operators—SHS is
not exactly the inverse of SHA.

We can further perform a SHA of this error, then a new SH
of the differences and see if the process converges. Results
over the test area are given in Table 5. There is indeed a sign
of convergence, but is it worth the effort? We will answer it
in the next section.

5.2 The ETOPG1-induced gravity disturbance model

This model results from the conversion into gravitational SH
coefficients, of the sets of SH coefficients representing the
Earth’s topography (lands, oceans, ice caps and underlying
bed-rock) provided by the ETOPO1 database, plus elevation
data of main closed seas and large lakes, as explained in the
previous sections. It may be symbolically noted {K lm(T jq)}.
It is complete to d/o 10,800. The behaviour of its spectral
components is shown on Fig. 10. Compared to the EGM2008
characteristics (to d/o 2,160), it is obvious that they are signif-
icantly larger, the well known sign of a compensation mech-
anism such as isostasy.
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(a)

(b)

mean 1' x 1' differences
la

tit
ud

e

longitude

Section AB in Atlas mountain : ϕϕ = 31° 

Fig. 9 Error of representation of the topography in the test area: dif-
ferences between the recomputed topography (from SH) and ETOPO1.
a Over the whole area: min/max/r.m.s. = −67, +67, 4.2 m; b compari-
son along section AB: the fit is much better when altitude gradients are
small (here East of longitude −7.7◦)

The model has uncertainties coming from the errors in the
original data sets. Some, of tens or even hundreds of meters,
were discovered in the ETOPO1 data, e.g. over the Dead
Sea and Jordan Valley, over lake Titicaca,. . . (we could cor-
rect for some of them). In addition, there is an error coming

Table 5 Reduction of the error of representation of the topography (in
meter) by iterated SHA–SHS

Iter.→ 0 1 2

Min −66.8 −44.6 −40.4

Max +67.3 +44.0 +41.6

r.m.s. 4.2 2.7 2.5

Morocco test area

Fig. 10 Spectral characteristics of the ETOPG1 field model to degree
10,800, compared to EGM2008 to degree 2,160

from the error of representation of the topography by SH (see
Sect. 5.1). The impact of the former is difficult to clarify. To
try to quantify the latter we may evaluate the global r.m.s.
error on the induced gravity perturbation δg. We start from:

δg(r, ϕ, λ) = G M

a2

∑
l

(l + 1)
(a

r

)l+2 ∑
m

K lmY lm(ϕ, λ)

(33)

We propagate the variances and we average over the unit
sphere σ1:

〈σ 2(δg)〉σ1 ≈
(

G M

a2

)2 ∑
l

(l + 1)2
∑

m

〈σ 2(K lm)〉 (34)

We make a single layer approximation with the surface den-
sity ρ equal everywhere to ρc (equivalent rock topography),
that is:

K lm ≈ ρ

ρ

3

2l + 1
T lm (35)

Using:

∑
l

∑
m

〈σ 2(T lm)〉 ≈ 〈σ 2(δH)〉
R2

0

(36)

where 〈σ 2(δH)〉1/2 is approximated by r.m.s.(δH ), the mean
error of representation, we find:

r.m.s.(δg)={〈σ 2(δg)〉σ1}1/2 ≈ 3

2

G M

a2

ρ

ρ

r.m.s.(δH)

R0
(37)
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Fig. 11 Error on DTM-induced gravity disturbance δg due to estimated error of representation of the topography by SH, over the Morocco test
area. min = −2.2 mGal; max = +2.2 mGal; r.m.s. = 0.12 mGal

→→

→

→

→

→

→

→ 603
µgal

→ 602

→ 601

→ 600

→ 599

→ 598

Fig. 12 Ellipsoidal correction on the gravity perturbations, limited to degree and order 120. It ranges between 598 and 603 μGal

If we take r.m.s.(δH ) ≈4 m (cf. Morocco area—representa-
tive of Earth),we have r.m.s.(δg) ≈ 0.5 mGal for the whole
Earth, which is rather small compared to other error sources
(errors in ETOPO1 as said above, in the reference global
gravity field model used to compute surface anomalies…).
This is confirmed by a direct computation over the Morocco
test area, Fig. 11) where the full error of representation (at
iteration 0—see Table 5) is analyzed and converted into errors

on gravitational harmonics. Therefore, we decided not to per-
form several SHA–SHS iterations worldwide.

Finally we computed the ellipsoidal corrections on the
gravity perturbations (Fig. 12), to d/o 60, then to d/o 120—
which did not make significant difference. They exhibit long
wavelength patterns with prominent zonal components and
have a magnitude around 0.5 mGal. They may be applied or
not depending on the usage of ETOPG1.
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5.3 The derived Airy isostatic model

We computed the SH coefficient corrections according to
Sect. 3.2 with a constant compensation depth D = 30 km.

Fig. 13 Comparison of the spectral components of the ETOPO1-
induced gravity disturbance and Airy isostatic field (fixed compensation
depth D = 30 km)

Obviously the mean magnitude of the �K lm coefficients
decreases very quickly due to the factor [(R0 − D)/R0]l ,
which is confirmed on Fig. 13: around degree 400, Airy cor-
rection is smaller than the topographic effect by a factor of
∼5, and it is more than an order of magnitude below it at
degree ∼1,000; then it becomes negligible for larger degrees.
We call δgI SO the gravity perturbations derived from �K lm ,
to be added to the Bouguer anomalies so as to obtain the
usual isostatic anomalies (Sect. 3.2).

At regional scale, we compare the DTM-induced gravity
disturbances and the isostatic corrections over our test area.
The former have been limited to degree 400 for sake of mag-
nitude comparison and for enhancing geographical correla-
tion. As can be seen from Fig. 14, the Airy model removes
a significant part to the topographic masses’ gravitational
effect.

6 External comparison

As discussed in Sect. 5.1 a critical point in our approach is
the truncation (at k = 3) of the expansion giving the gravita-
tional SH coefficients in terms of the harmonics of the relative
elevations H/R0 at the kth power. Outside validation only
can bring confidence (or not) on this choice. The most reli-
able way of doing it is the direct numerical integration of the
attraction of the topographic masses effect (and/or of their
normalization), which has been the approach of Kuhn et al.
(2009). As recalled in Sect. 1, Khun uses a numerical scheme
where the gravity contribution at point P of the whole topog-
raphy is computed over the full sphere by quadrature over the
topographic masses elements having a size which increases
with the distance to point P (to reduce the computational
effort).

Fig. 14 Airy isostatic corrections over the Morocco test area, with a compensation depth of 30 km (a); and DTM-induced gravity disturbances
(here labelled spherical Bouguer corrections) to degree 400 (b)
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Fig. 15 Difference between the combined DTM (ETOPO1)-induced
gravitational effect from Newtonian integration based on point values
(grid/node registered data) and the spherical harmonic approach (this

paper) over the Morocco–South of Spain test area; min = −37.344,
max = 48.040, mean = −0.067, SD = 2.340 (Unit: mGal). (Kuhn, pri-
vate communication 2011)

Kuhn (private communication 2011) nicely provided a test
computation over the Morocco area. He made two calcula-
tions: one based on ETOPO1 mean (cell/pixel) values and
another one based on ETOPO1 point (grid/node) values. In
the latter case, the values are taken as mean values of a block
shifted by half a grid element. In both instances, the computa-
tional point (i.e. at which the gravity disturbance is evaluated)
is the center of each considered block. Therefore Kuhn’s sec-
ond case was retained for comparison, which is summarized
by the difference map in Fig. 15.

There is almost no bias (−0.067 mGal) in the differences
which is not surprising since our truncation limit (k = 3)
ensures that the K 00 term is computed with no approxi-
mation. The agreement is fairly good on average with a
standard deviation of 2.34 mGal. However, the minimum
and maximum values and the geographical distribution of
the differences (which exhibit a clear correlation with the
topography) probably indicate that the truncation at the third
power of the elevation is not sufficient in areas of high/rough
topography at such high resolution. Finally part of the dif-
ference may also be attributed to the effective spatial resolu-
tion of the spherical harmonic models at d/o 10,800 and to
Gibbs effect of which the SHAs suffer when modelling step
functions.

7 Worldwide maps of spherical Bouguer anomalies
and isostatic corrections

The different parts of the global, spherical approach which we
explained in the preceding sections, have been applied to the
production of several 1′×1′ grids (and maps) in the context of
the “World Gravity Map” project of the Commission for the
Geological Map of the World (CGMW 2010). The project,
sponsored by UNESCO, consists in the production of a new
worldwide Bouguer anomaly map. We therefore computed
four main grids, all of them on the physical Earth’s surface
(lower limit of the atmosphere); they are point values at the
nodes of the ETOPO1 equiangular mesh.

(a) Surface gravity anomalies (�g) from EGM2008: this
computation was of course done up to the maximum
degree (2,159, plus terms up to 2,190) of the reference
model (Fig. 16).

(b) Gravity perturbations (δg) from the ETOPG1 model, to
d/o 10,800 (Fig. 17).

(c) Spherical Bouguer anomalies (�gB): by subtracting the
grid (δg) from the (�g) one (Fig. 18).

(d) Isostatic corrections (δgISO) according to the Airy model
with a 30 km compensation depth: the computation was
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Fig. 16 Surface (Molodensky) gravity anomalies from EGM2008 and ETOPO1; min = −364 mGal, max = +670 mGal

Fig. 17 Gravity perturbations (ETOPG1) from ETOPO1, at Earth’s surface; min = −1,123 mGal, max = +626 mGal

done only to d/o 2,160—which is by far sufficient con-
sidering the spectral decay of the Airy isostatic correc-
tion SH coefficients (Fig. 19).

Other grids have been derived such as the one of isostatic
anomalies (by adding �gB and δgISO). They will be analyzed
and documented by the CGMW project committee.
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Fig. 18 World spherical Bouguer anomalies from EGM2008 and ETOPO1; min = −529 mGal, max = +1,005 mGal

Fig. 19 Airy isostatic corrections derived from ETOPO1; depth of compensation is 30 km; min = −761 mGal, max = +460 mGal

8 Conclusions

We have designed a way to handle global topography and
derived gravity at a very high resolution through SHA and
synthesis, though with some approximation. The present
work has established and used expansions up to degree
and order 10,800, compatible with the 1′ resolution of

the available data set. Thanks to the approach, especially
the successive re-normalization strategy in the computa-
tion of spherical harmonic functions, we do not foresee
limitations in the mid-future when higher resolution data
sets are used. The method has been validated in one case
but this test is incomplete; further verification will be
necessary.
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The way Bouguer, and also isostatic anomalies, are under-
stood and computed differs from the common usage, but
meets modern concerns which tend to take the real Earth
into account.

A 1′ × 1′ grid of worldwide surface gravity perturbations
has been computed from the ETOPO1 data set and other
data for lakes and closed seas, taking into account usual
normalization conventions for the densities of various topo-
graphic components. Higher-resolution terrain corrections
may benefit from it by integrating residual topography up to
shorter distances. 1′ × 1′ grids of spherical Bouguer anoma-
lies and of spherical Airy isostatic corrections have also been
produced.

The philosophy behind this novel computation of a so-
called “complete spherical Bouguer anomaly” will be clar-
ified with respect to different communities of users in the
context of the World Gravity Anomaly Maps to be published
by CGMW.

Acknowledgments This research was supported by the CNES Pro-
gramme Directorate and the Toulouse Space Center, the Centre National
de la Recherche Scientifique and the Institut National des Sciences de
l’Univers, the Institut de Recherche pour le Developpement. We espe-
cially thank Michael Kuhn who kindly applied his method over the
Morocco area for comparison with our method. We thank the reviewers
who made very detailed and constructive comments.

Appendix A: computation of associated Legendre
functions (ALF) of very high degree

We compute the Hlm(x) by standard stable recursion with
fixed order m, variable degree l from m to L . The recursion
is modified by a normalization factor which is applied sev-
eral times, as becomes necessary with respect to the IEEE
limitations on real numbers.

We make choice of a factor f , very small but larger (by
10 to 20 orders of magnitude) than the smallest real number
which the computer can represent. For instance f = 10−280.
We then define G=1/ f . We initialize a counter N f = 0 and
a table ν(k) by ν(0) = m − 1; then we compute:

H̃0,0 = f ; H̃1,1 = √
3 f ; H̃l,l = √

1 + 1/(2l)

H̃l−1,l−1 for l ≥ 2

H̃l,l−1 = x
√

2l + 1 H̃l−1,l−1; l ≥ 1

H̃ (x)
lm = αm

l [x H̃l−1,m(x) − H̃l−2,m(x)/αm
l−1];

l ≥ 2, 0 ≤ m ≤ l − 2 . . . (R)

where αm
l = [(2l − 1)(2l + 1)/[(l − m)(l + m)]]1/2

We apply (R), with m fixed and l variable (from m to L),
as long as |H̃lm(x)| < G.

As soon as this condition is not verified, and if m < L:

• we increment N f by 1
• we define : ν(N f ) = l

• we multiply H̃lm(x) and H̃l−1,m(x) by f
• we continue the recursion in l.

The process is iterated (still with m fixed), each time we
have |H̃lm(x)| ≥ G. At the end H̃ν(k),m and H̃ν(k)−1,m are
divided by f , for k = 1, . . . N f, and we define ν(N f + 1) =
L .

We note that N f = 0 if the condition |H̃lm(x)| ≥ G was
never fulfilled. For a given value H̃lm(x) (m fixed) there is a
k for which ν(k) < l ≤ ν(k + 1); therefore its true value is:

Hlm(x) = H̃lm(x)/ f k+1

It cannot be written as such in most cases if it exceeds the
IEEE range [10−s, 10+S] but instead we get its logarithmic
value:

log |Hlm(x)| = −(k + 1) log f + log |H̃lm(x)|
with sign[Hlm(x)] = sign[H̃lm(x)].

Finally the value of the ALF is obtained as follows:
Let Z = log |Plm(x)| = mlog(cosϕ) − (k + 1)log f +

log |H̃lm(x)|
• if Z < −s : Plm(x) = 0. (it is actually an underflow)
• if not: Plm(x) = 10Z× sign [H̃lm(x)]

In practice, we never encountered an overflow. As an
example, in the case of Fig. 3b the algorithm finds six nor-
malizations: ν(1) = 4,418, ν(2) = 5,098, ν(3) = 5,988,

ν(4) = 7,156, ν(5) = 8,735 and ν(6) = 11,110.
Actually we have seen that we can take into account the

ALFs for l > lmin = l0(m) − D(m, ϕ) only, that is we do
not have to recover the ALFs, as shown above, for l ≤ lmin

which is some time saving. The determination of lmin is semi-
empirical. It has been established by numerous tests up to d/o
32,400.

L being the maximum degree we define K = 20 +
8.10−3L and dL = 3

2π/L(this is 1.5× the maximum res-
olution). For a given latitude ϕ, that is at polar distance
d = 90 − |ϕ|:
• the overall computation is carried up to:

mmax(L) = min[Lcosϕ + K , L]
or max [35 − 5 log2(dL/d), 0] if d < dL and L > 720

{d-condition}

• for each order m ≤ l ≤ L , from mmax (L) to 1 because
computations are done in reverse order (in m and in l) for
improved accuracy:

m ≤ lcosϕ + K ⇒ lmin = max[m, (m − K )/cosϕ]
or m ≤ 35 − 5log2(dl/d) ⇒ lmin = 3π

2

1

d27−m/5
if

{d-condition }is true.
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Appendix B: implementation of the Taylor expansion
method

Let us consider a geodetic functional written as: F(r, ϕ, λ) =
w(r, ϕ) f (r, ϕ, λ) with:

f (r, ϕ, λ) = G M

aq

L∑
m=0

[
L∑

l=m

(a

r

)l+q
δl (Clm cos mλ

+Slm sin mλ) Plm(sin ϕ)

]

and where w(r, ϕ), q and δl are given by the table below for
the quasi-geoid height (ζ ), the gravity anomaly �g and the
gravity perturbation (or disturbance) δg.

Param. w(r, ϕ) q δl

F
ζ 1 /γ (r∗, ϕ) 1 1.
�g 1 2 l − 1
δg 1 2 l + 1

In the case of ζ, r∗ is at the telluroid and is (in principle)
obtained by iteration. The Taylor expansion of order N is:

f (r, ϕ, λ) =
N∑

k=0

�k
(

r − r0

a

)k

with �k = G M
aq

(−1)k

k!
∑L

m=0 �k
m

We now use the PSLR technique (Bosch 1983); each �k
m

is written as:

�k
m = Ak

m cos mλ + Bk
m sin mλ

and (PS part of the algorithm):

[
Ak

m
Bk

m

]
=

L∑
l=m

(
a

r0

)l+q+k

δl �k
l+q Plm(sin ϕ)

[
Clm

Slm

]

where the �k
l+q have been defined in the text.

(ϕ, λ) being now a grid node (ϕi , λ j ) with λ j = λ0 +
j�λ, (λ0: origin of longitudes, �λ : grid stepsize in longi-
tude), all �k

m(λ j ) = �k
m, j are computed simultaneously by

(LR part of the scheme):

�k
m, j = 2 cos m�λ �k

m, j−1 − �k
m, j−2

This recursion is initialized by �k
m,0 = �k

m(λ0) and �k
m,1 =

�k
m (λ1).
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