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Résumeé

Ce cours a pour but, avec un minimum d’outils mathématiques simples, de familiariser le lecteur
avec les équations fondamentales de la mécanique céleste (Gauss, Lagrange, Hill) et leur
application au calcul analytique approché des perturbations subies par les trajectoires de satellites
artificiels de la Terre, principalement dans le domaine de la géodésie spatiale.

“GEODETIC SATELLITE ORBITS IN THE EARTH'S GRAVITY FIELD*
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Our goal is to give the minimum of what is necessary to understand the gross evolution of
geodetic (i.e. low to medium altitude) satellite orbits around the Earth, as they are perturbed by
the spatial variations of the gravitational field. Then an overview is given on how global
geopotential models are determined. Finally an application is made on the derivation of orbital
radial perturbations induced by the geopotential, which are fundamental for the planning and

analysis of altimetry missions.

This does not pretend to be a course in celestial mechanics, and we will use the most

simple mathematical tools whenever possible, still preserving the rigour of the proofs.

1. INTRODUCTION AND BASIC CONCEPTS

The motion of an Earth artificial satellite is the motion of a body with very small mass
and negligible dimensions with respect to the planet. For most forces acting on the satellite, and
especially the gravitational forces, it is sufficient to approximate it by a point mass. Surface
forces, which are more complex due to their nature, require special treatments in which the
shapes and surface properties of all the spacecraft elements are modelled ; they will not be treated

in detail in this tutorial.

Other forces, such as the attraction of the Sun and Moon, the solid and fluid tidal effects
will also be considered as being very small with respect to the main gravitational ones. Also, the
equations of motion will be written, with sufficient approximations, in a reference system
assumed to be fixed in space, corrections to this hypothesis being suitable of a treatment in terms
of small perturbations. Finally, the actual law of forces will be written according to the classical
mechanics ; the framework of general relativity is the rigourous one but differences with the

classical approach are negligible for our purpose here.



Therefore, we consider that a massive point O, with mass M, exerts on a point mass S, of

mass M, a force F,_, =—GmM OS/OS*, (where G is the constant of gravitation and the overbar

denotes a vector), and that the acceleration acquired by S is proportional to the force. This

principle must however be written in a galilean reference system (®). If we take a system of axis

(%) centered at O, with fixed directions in space, we write :

d*0S _— 0S
and
MLy = GMMOS/ OS’
Therefore :

d> 0S os

dtz Z—G(M +m)OS3 (1)

Of course, in the case of an artificial satellite m << M and G(M +m) is replaced by GM.

1e1. THE UNPERTURBED SATELLITE ORBIT (two-body problem)

This is the orbit of S around a perfectly spherical Earth, of center of mass O. This point is

one focus of the conic on which S moves ; in our case it will always be an ellipse (first Kepler’s

law). The closest point to O is the perigee P, the farthest is the apogee A, OS is the radius vector

I of modulus r, the ellipse semi-major axis is a, its eccentricity is e, p = a(l—e ) is the
parameter. S is positioned : either by the true anomaly v = (@, &) , or by the eccentric anomaly
E =(@,@), where S is on the principle circle (of which the ellipse is the affine

transformed), or by the mean anomaly M = (@,@) where S moves on the principal circle

with a uniform velocity at the motion period, T (fig. 1).



Fig. 1. The elliptical motion of S around O

In the plane of the orbit, we have for the radius r and coordinates X, y of S :

X =rcosV =a(cosE —e)

y=rsinv=a+l-e’sinE (2)
a(l1-e?

r :M:a(l—ecosE)
1+ecosv

(from which sin v, cos v can be expressed in terms of sin E, cos E, and vice versa). From these,

other useful formulas are derived :

v-E  pBsinE  fsinv 3)
2 1-fcosE  1+cosv

ool )

sinv —sin E = Bsin(v + E)

The main motion n is defined by n=2z/T and we have :

M=n(t-t,) (4)



t, being an epoch when S passes through perigee.

Finally we have the second Kepler’s law :

dv
r’—=na’y1-¢? ,

dt
the kinetic energy integral from which the velocity V is such that :
5 2 1
V:=GM|—-—
r a

and Kepler’s third law :

n‘a’=GM = u

Practically, in order to compute X,y from t, it is necessary to compute M, then E from the
Kepler equation :

E-esinE=M

then to apply (2).

Fig. 2. The orbit in space

Actually, the orbit lies in a plane which position in space depends on the initial

conditions. The plane intersection with the (X ,Y) plane of (})) is the line of nodes, the ascending



node N being the point where S crosses the equatorial plane with Z increasing ; the longitude of N

I, counted from 0° to 90° for direct motion and from 90° to 180° for retrograde motion. In the

orbital plane, the direction of the perigee P is counted from N : @ = (ON , OP) is the argument

of perigee. These angles are shown on figure 2.
Let us call Tthe transformation : (a,e, 1,Q, 0, M) — (I’, I*).
With :
F=[X, X, X,]" =[xvz]"
we have :
F=R, (QR (1R, (@)[xyo] 9)

where :

0 o
¢c -s|,R(a)=]| 0
s

(= =
O O o»w
pe
W
—_~
R
SN—
Il
S »n O
- o O

(C =cosa,S= sina)
X,y are of course given by (2).

The second part of the transformation is given by :

2
r

|*=na—(—sinE5+cosE\/1—ez ql (10)
where :

cosQcosw —cos | sinwsinQ
P =|sinQcosw + cos | sinwcosQ

sin | sinw
and :
Q=7AP/cw
(to derive (10) from (9), one uses the fact that dE /dt =na/r).

The inverse transformation T~ can be achieved in different ways. One is the following :



a=(2/r=r*/u)"
.compute C = [ x I (angular momentum) ;

I=cos’(C,/C)

C | = C is constant

ksinQ=C,, kcosQ=-C,, withk =(C? +C22)1/2 : define Q.

.compute p = C\/E =e= (1— p/ a)l/2

.compute tgy = F.?/[ya(l— ez)]l/2 , then E is defined by : esinE =tgy (1—¢)",
ecosE=1-r/a,and M =E —esinE

.compute V from: resinv = ptgy, recosv=p—r
then (@ + V) from: rsin | sin(w +V) = X,

rsinl cos(w +Vv) = (Xl cosQ+ X, sinQ)sinI

= .

For future usage, we now need some series expansions of a few functions of the two-body
problem. Such expansions may be viewed as power series in €, or as Fourier series in M
depending on the utilization. By an application of a theorem by Lagrange applied to Kepler

equation, it can be shown that any function F (E) of the eccentric anomaly E may be expanded as

0 en dﬂ*l

F(E)=F(M —
(E)=F( )+n:1n!dM”’1

[F'(M)sin“ M] (11)

which is convergent for e <e,,e, being defined by 1+ (1 +e; )1/2 =e, exp (1 +e; )1/2 , that is

e, = 0.6627...
We then find, for example :
o en (n-1)/2 (n -
E=M+D e Z(—l)’(jj(n—Zj) sin(n—2j) M (12)
n=1 * j=0

r e’ = e 02 \n-2 :

g: 1-ecosM —7(cos2M —1)—§m ,-Z;(_l) J (n—2j) cos(n—2j) M
(13)

It is obvious that, since the motion is periodic, any function of coordinates is 2n-periodic

in M. For example, cos E can be expanded as a cosine series in M :



coskE =a, +Zapcos pM

p=1

with :
8, =~ [CosEAM, a, = [ osE cos p M dM
0o = o oCOS , p = u OCOS cosp

From E —esinE = M we derive dM =(1—ecos E)dE ; therefore : a

0

=—¢/2. For a,

we note that cos pM = [d(sin pM) / dMm ] / p and we integrate by part, finding :

p

1 2z
=———|sinpMd(cosE
a pﬂ_ LSII’I p (COS )

Replacing M by E - e sin E, noting the invariance of the integral limits, we find :
11 2z 1 1 2z
2% =3k [cos(p—1)E ~ pesinE|dE _EEL [cos(p+1)E - pesinE |dE

We define the Bessel function of the first kind and of order n as :

3.(x)= ﬁfﬂcos(nt _ xsint)dt (14)
So that :
a,=[3,.(pe)- 3, (pe)|/p
and finally :
cosE = —§+§}%[Jpl (pe)— 3, (pe)|cos pM (15)

A property of the Bessel functions is that :

Jo (%)=, (x) =23/(x) (16)
which simplifies a little the form of (15).

From this it is easy to find that :

r e’ 21 d
g:1+7—2eplp ” [J (pe)]cospM (17)

Other useful formulas are :

v=M +2§:%{Jp (pe)+ iﬂn[Jp_" (pe)+ .., (pe)]}sin pM (18)

(f: as given in (3)).



2 o0
cosv=—e+2(1_ee ]ZJp(pe)cospM (19)

p=1

» 1d|J
sinv =2v1-¢e?> > : Msin pM (20)
p=1

Bde

More general formulas will be needed in the expression of the gravity field perturbations,
for functions of the form (r/ a)n cosmv and (r/ a)n sinmv for any n and m, positive or negative. In

complex form we write :

+00

(é)nexp(imv) = ZX,Z"" exp(ikM) (21)

k=-00

This defines the Hansen coefficients. They are real functions of e, and can be evaluated in

many different ways. Since X, is a Fourier coefficient, we have :

m_ 1 (Lj : .
Xy =53 exp (imv) exp(—ikM) dM

Introducing z = exp(iE) , we find that :
exp(iM) =2 exp[-e(z-1/2)/2],
dM = —i[1-(e/2)(z +1/2)]dz/z.
r/a=(1-pl2) (1-g)/(1+ 7).

and expl(iv) = Z(l - ﬂ/z)/(l - ﬂz)
Finally :
1 1 e n-m+ ke 1
Xl?m =TT il A Zmiki1 (1—£j (I—IBZ) l-eXp|:—(Z——)j|dZ
(1 + ﬂZ) 2ir z 2 z
From this, the following series expansion can be found (after some laborious algebra !) :

for k=m+s, withs>0



S

Xnis (e) = Z

t=0

e

If s <0, we compute X7 =

{Z‘:i(n+m+1] (m+!s)psi‘:(n m+ jM(—l)q

=0 p=0 0 S+J_q q'

= X" ", by the same formula, using the property of symmetry

of the Hansen functions (XI?”‘ = Xfl’(‘m).

In the above formula, binomial coefficients [ pﬂj , where x>0, must be computed as

p+p-

1
0 j, p being always positive.

being equal to (—1)" (

Another expression for the Hansen coefficients is :

e L | (R (877 I WO (S Bc)

R :

which can be more economical to evaluate than (22). From (22) and from the symmetry property,

it is obvious that X" (e) = 0(e‘k"m‘) .

For large values of the n, m, k indices, it is numerically more efficient and precise to

compute the Hansen coefficients by Fourier transform, from their definition (formula 21).
1-2. DISTURBING FORCES ON AN ARTIFICIAL SATELLITE

These forces are of different types :

e gravitational forces : first, and most important for our purpose here, are the forces due to the
non-sphericity of the Earth in the general sense (geometrical form, internal density
distribution). The main term is related to the flattening of our planet, the others describe all
lateral density variations. This will be the whole subject of chapter 2. We then have :

¢ the third-body perturbations due to the Moon, the Sun, and the closest and/or biggest

planets,



¢ the tidal forces of various origins : solid tides due to the global yielding of the elastic
Earth to the disturbing forces of the Sun and Moon ; ocean tides with numerous
frequencies and varied amplitudes.

¢ atmospheric masses variations associated with pressure changes, and effects of these
changes on the solid crust (by elastic deformations due to loading) and also on the
ocean and large sea and lake surfaces.

e surface forces :

¢ atmospheric drag, which acts in a very complex way due to the variations of the
atmosphere density under the action of the Sun (solar cycle, yearly, seasonal, monthly,
daily and hourly variations do exist due to the Sun activity, geomagnetic effects and
induced chemical reactions), also due to the complex shapes of satellites and the nature
of their surface elements,

¢ radiation pressures : there is the direct solar pressure but also the one coming from the
re-radiation of the Sun light by the Earth (albedo effect, the most complex since it is
related to the cloud coverage), plus the infrared radiation of the Earth (considered as a

black body), all requiring a careful modeling of the spacecraft components.

Finally, correction terms to the total acceleration of the satellite must be added to account
for the correct relativistic description of the equations of motion and, if the reference frame in

which these equations are written is moving, apparent accelerations have to be included.
1.3. EQUATIONS OF PERTURBED MOTION (LAGRANGE, GAUSS, HILL)

We have already written the cartesian equations of motion, (1), in the reference frame (X)
in the case of the two body problem. With initial conditions (I’O,I’O) att,, this is a system of

ordinary differential equations which solution is uniquely defined. Actually, (1) is equivalent to
the system :

da
—=Ala,t

with :



a =[a,e1,Q,0,M]

A=[0,0,0,0,0,n,] , n, = (y/aj)l/2

a, being computed from (r0 , ro)

This simply reflects the fact that, if one transforms the system (1) by (T) - given by (9)
and (10), one finds the system for « . It is therefore quite natural, when introducing disturbing

accelerations which are very small with respect to ,u/ r’, to use the same transformation, hoping

that the solution of the transformed system will be expressed as small variations around the

solution of the two body problem, that is around
a, _[ao, e, 1,,Q,,0,, M, +n, (t—to)].
Let us write the equations of motion including the disturbing accelerations y (one will

often say disturbing “forces*) as :
F=—ur/r*+7 (24)
with F(t,)=7, , F(t,)=F.

We assume that the right-hand side member satisfies conditions such that (24) has always

one and only one solution [I’(t),f(t)] for‘

Arzela conditions).

At any time t in this interval, we can therefore apply the transformation 7~ to the
solution of (24) and we get quantities a(t),e(t),1(t),Q(t),w(t), M(t) which are no longer
constant (or linear in time for M). These are called osculating elements. Their physical meaning
is simple ; if, for t’ >t we suppress 7, then the satellite motion obeys the system :

t'>tf=—ur/r’, with(t)=F , F(t)=F ,
of which the solution is : a(t’) =a(t), e(t’)=e(t), 1(t")=1(t), Qt")=Q(t), ot =wlt),

M (t )+ [,u/ alt ] (t—t’), that is a keplerian ellipse. This ellipse passes through the

point S(t) of radius vector T and a mobile on it has the same velocity vector T, but the

acceleration is different by construction (that is the term “osculating®™ is improper from the

geometrical viewpoint).



Thus, using the variables a(t),e(t),... M(t) allows to visualize the trajectory evolution
(e.g. rotation of the plane, of the line of apside : apogee-perigee, ...). Now, we want to deduce

from (24) and from the formulas for T and T™' the system verified by the osculating elements,

which must be of the form :

a _ _
—— = function of & and ¥

dt
with :
a(t,)=a=7"(r.F)
The perturbing acceleration is projected on the mobile reference system axis : (f,§,W)
defined by : f =/r,§: unit vector orthogonal to f in the osculating plane and in the direction of

A~

W="Fx$; thatisw=(FxF)/|[FxF

=s|-

,and §=WxF (fig. 3).

Fig. 3. The Gauss mobile system (f,$,W)

So : ¥ =Rf+S§+WwW. Now, by derivation of (6) with respect to time and since

rt=F-F (fromr? = F'I’), we readily find :

(y/az)a:2f-7



. . T T . . .
Rewriting (10) as T = na(l—ez) / [esmvr +(1+ecosv)s] , obtained by a rotation
around W with angle v, we obtain :

a= (2/n)(1 - ez)_l/2 [e sinvR +(1+ ecosv)S]

We then use the angular momentum vector C = CW, with C = [ ,ua(l - ez)]l/2 = ( ,up) v ;C

verifies dC_Z/dt =T x (— ur/r’ +77) =Fxy= 1/2(,z¢/p)]/2 va/+(,up)l/2W
We define the following unit vectors : N in the ascending node direction, N’ orthogonal
to N in the equatorial plane, M : orthogonal to N in the (osculating) orbit plane, and T, j,K :

unit vectors of the (%) frame (fig. 4).

X .ﬂs‘(em/fnf Node.

Fig. 4. The intermediate vectors N, N’, M introduced for the equations for e, I,Q

Writing Fx7 =—-rW$§+rSW, W=NxM,M =N'cosl +ksinl, noting that N
depends only on Q, that N' = d N /dQ = —NQ, also that N = N'Q, and taking account that

N'xk=N,NxN’"=k,Nxk =-N", we obtain :



W=Qsinl N- I M

Noting also that f = N cos(w+V)+ Msin(w+Vv), §=-Nsin(w+Vv) + Mcos(w+V),
and equating the components of dC/dt on F£,§,W, we find three equations for
p=a(1—e?)-2aee, I and Q.

The equation for M is obtained through : r =r (a,e, M) which implies :

Fr=ad/@a+ed/@+Ma/a

It is easy to find I‘:naesinv/(l—ez)l/z,d’/éa:r/a, a|E =aesinE,
E/k=asinE/r, E/M =a/r, &/&=-acosvV, éi’/a’M = aesinv/(l _e2)1/2 ,and this yields
the equation for M .

The last equation, for @, is more tricky. We start from y = @ +V, and from the second
Kepler’s law : y =na’ (1—62)1/2 / r’> which is valid in the osculating motion if w is counted

from a fixed direction. But, in the real motion, all elements vary and the direction ON from which

one would like to count y varies too ! Therefore, we cannot write ¥ =@ +V if we apply
Kepler’s law. We derive y directly from tgy = 57/&, that is dz//=<§d77—77d§)/(§2 +772),

where OS = &N + 7M. For getting d&,d7, we compute dOS/dt when Q,@+vand | vary ; in
this case :

dOS/dt = [QIZ+ IN + (o +\7)W] x 0S

Writing this equality in (N, M, W) with k =sin| M + cos | W, we arrive at :

E= —rsin(a)+v)(a')+\7+Qcosl)

n= rcos(a)+v)(a)+v+Qcosl)
(the 3rd equation would give é’ == (component of d@/ dt on W) =7l —&sinlQ) ; we then
find :

dy =dw+dv+dQcosl

Consequently :

& =na’(1-¢*)"” r’ —v—Qcosl



v is computed as dv(e,M)/dt =¢ &/@+ M &/, with :
A& = sinv [a/r + 1/(1—e2)] , A/ M = (l—ez)l/2 a’/r? . The equation for & follows ...

We now summarize the six equations, known as Gauss equations, which are obtained by

the elementary manipulations shown above :
a= Z[Resinv +S(1+ ecosv)]/(nf )
¢=f[Rsinv+S(cosE +cosv)]/(na)
| = Wrcos(e +v)/(na*f sin|) (25)
Q= Wrsin(w +v)/(na*f)
o= f [— Rcosv +S(1+(1+ecosv) ' sinv

—Wr cos | sin (e + V)/(na2 f sin I)]/(nae)

M=n+f? {R [- 2e/(1+ecosv) + cosv]—S[l +(1 +ecosv)’1]sinv}/(nae)

(here: f =+/1-¢%).

Next, we will derive the Lagrange equations. They are a particular case of the Gauss

equations when the disturbing acceleration y is the gradient of a function ® (force function) :
7 =VR. This is the case of all forces of gravitational origin and this leads to a simpler

differential system. In the (f, § ,W) system we can write :

dR = VR-d OS = Rdr + Srdy + Wd¢
or, for any orbital element « :

R a oy v
oo o 17,04 W o'

where (dr, rdy,dg ) are the orthogonal components of d OS. Clearly, dr can be due to changes

12

da, de, dM only and we have : &/ =r/a,a&/& =-acosv, éi’/él\/l :aesinv/(l—ez) ,
already used above. Similarly, dy can result from changes in Q,®, and v as shown in the

derivation of the Gauss equation for @, and we have : dy/dw =1, oy /X2 =cosl, Sy/& =1,
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and since v is function of e and M, dy /& = sinv[a/ r+1(1- ez)_l], oy |AM = (a/r)z(l— e?) .
Finally, we already obtained d¢ = 7dl — &EsinldQ, from which &/A =n=rsin(w+Vv) and
| &y =~Esinl =~ reos(@ +V)sin .

All the other partial derivatives are equal to zero. Therefore we have found :

R 1o
A a

R_ RacosV + Ssi v(a+ ' )

Y cos sin o

R

- rsin(ew+v)W (26)
R

ol rScos| —rWcos (@ +V)sin |

R

=~ -rS

120 '

0’R_ aesinv+8£ o2

M 1-¢? r

We now transform the Gauss equations one by one. For & we replace 1+ecosv by
a(l —e’ )/ r and relate the right-hand side to AR/AM. For €, we note that
coskE +cosV:[a(1—e2)/r—r/a]/e, we have R sin v in terms of &R/AM and S, which we
replace by (1/ r)o’R/ Ao . | is obtained from AR/ and R/Aw . Q is immediately written in
terms of R/A . The first two terms in the bracket for @ equal (1/ a) AR/ and the last one is
proportional to ¢R/A . For M, we first express S and its factor in terms of R and R/& and
then replace (1— ez)R/(l +ecosV) by (r/a) R=AR/A.

Finally, the six Lagrange equations are :

de 1-e* R x/l—ezﬁ

dt  nale M na’e dw




@ el &1 &
dt  npa’v1-e?sinl @ na’i1-e?sinl &2
do 1 R

(27)

dt  na’i-e’sinl 4

dw \ll—ezﬁ cos| R
a

dt ~ na’e & na’y1-e’sinl

M 2R 1-€&R

=Nn-— _—
dt naa na‘e &

The form of this system is remarquable. If we take o = M —nt instead of M, we have

R/M =R/éo and :

%[a,e,l,ﬂ,m,(f]: M (a,e,1)[R,. R, R}, Ry, R LR, |

where R/ = AR/da and where n is replaced by ( y/ a’ )1/2 . M is an antisymmetric matrix with

only ten non-zero elements. The system may be simplified further if one adopts the so-called

Delaunay variables :

L~ i

G=yma(l-¢’)

H =y a(1-e*)cosl (28)
=M

g=w

h=0

In this case, we simply have, with F =R + z*/ (2 LZ)
d. & dG & dH JF

d a4 > dt & > dt o
d & dg & dh &
- (29)

- a4 d & odt M
This system is said to be canonical, with the hamiltonian . It is the best suited one for

some sophisticated techniques of deriving analytical solutions.



In the case of quasi-circular orbits, it may be of interest to describe the real motion in
terms of discrepancies with respect to a reference circular trajectory whose plane is fixed in (X)

and defined by its mean motion 1, the radius of the orbit, I, satisfying Kepler’s 3rd. law :

ﬁ2F3:,u.

The true position S of the satellite will be given by its three coordinates (u,V,W) in the

mobile system rotating with the fictitious reference point S (fig. 5).

Z

re/’e rence orbf
T~

X
Fig. 5. The Hill reference orbit and rotating system

We here restrict ourselves to conservative forces, that is 7 = VR . In the rotating system

> ={uvw} , which rotation vector p with respect to ( ) is AW, we have :
— /v +y =[d?r/dt? ] =[d’r/dt* |, +2p x[dr/dt]. + px(pxT)+pxT
The last term is equal to zero since M and therefore p are constant. This equation is

projected on i, in which the coordinates of S are 7 + u,v,w. We find :



Uy )7 R
U-2av - (F+u) = —5(F+u) +—
(rru)=—Lir )+ 3
o mee o M R
V4200 -’V = -5V +—
i P&
) “o R
W=—SW+—
r’eoav

Hill equations are finally obtained by linearizing this system around u=v=w =0. We
first write : r* = (F+u)’ +v> +W? =~ 72 + 2uF = 7 (1 + ZU/?), from which : r7 » ?’3(1 — 3u/?).
Hence, the first term in the right hand side members of the above equations becomes
—u(T=2u)/7?,— /7> ,— 4w /T° . Replacing by AT yields the final Hill system :

U—2Av-3’u=R/a

V+2fu=JR/& (30)

W+ AW = R/Av

Note that the last equation is decoupled from the others, allowing a separate treatment.

1+4. APPROXIMATE ANALYTICAL SOLUTIONS OF THE EQUATIONS OF
MOTION

For further use in this course, it is sufficient to consider only the case of the Lagrange

equations with a disturbing force fonction ® . However, much of what follows may be applied to

other cases treated with the Gauss system.

® is a function of the position, hence of the six osculating elements, and also of the
coordinates of the disturbing bodies (Moon, Sun). It is a 2 z-periodic function in £2, @, M since it
must have the same numerical value when these arguments change by 27, the others being
constant. On the other hand, the position of a disturbing body may be expressed via the orbital

elements of its trajectory : a",e",1",Q", ", M", with respect to the reference frame (>) or to an

intermediate reference frame with given (slowly varying) Euler angles ¢ = (81 6 ,83) . It will be



assumed, with enough accuracy here, that (a* el *) are constant and that Q",@", M" and ¢ are

linear functions of time. Obviously, ® must also be 27-periodic in Q ,@ , M " and in these Euler
angles. Finally, and as concerned all Earth gravity direct and tidal effects, ® must be 2 z-periodic
in @, the sidereal time (we here assume that the equatorial plane of (X) is the Earth mean equator
and that @ is the mean sidereal time, discrepancies from this hypothesis being treated as very

small corrections to the solution).

Therefore, ® may be expanded as a Fourier series of the form :

R=YB (a,e,l,a*,e*, I *)cos(jQ+ka)+IM +jiQ +k'0" +I'M" + p9+qg+cD)

ik iK' pg
The summation runs on all indices, for all disturbing bodies, and the phase @ is a function

of these indices in general. We write ® in a more compact form, as :
R=YB. (mm)cos(iA+i"A"+hH) (1)

where i stands for (j, K, I), i” for (j*, k*,l*), h for (p,q). m is the triplet (a,e,l) of the satellite

metric' elements, A the triplet (Q,a), M) of its angular elements ¢ Although | is an angle, it is
called a “metric* element similar to a,e, because of the type of equation which governs its
behaviour.); m", A" designate the metric and angular elements of a disturbing body ; and H
stands for all other angular parameters (and the phase is distributed among all pertinent
arguments and indices).

The form of the Lagrange equations is such that :

dm

EZZCWh (m,m")sin(iA+i"A" +hH) (32)
dA * - -k *
E:ZDn*h (m,m")cos(iA+i"A" +hH) (33)

In (33) there generally exist terms with all indices equal to zero, that is terms which are

independent of the angular elements : D,

(m,m").

Many different methods exist for obtaining the solution of these equations. Modern
approaches all use algebric manipulators, but it is usely not too difficult to obtain by hand
calculations a first good idea of the solution characteristics by retaining only the most significant

terms, in particular by neglecting all the terms that are of the order of the square of small



quantities characterizing the disturbing function. Such a procedure is called a first order solution

and is simple to apply once the equations are written as in (32) and (33).

Let us note m, = (ao ,€45 IO) the mean values of (a,e,l), which are obtained if one neglects
all the terms in (32). These are substituted in (33) in which we also provisionally neglect the
periodic terms, keeping only the D,,'s. We find : dA/dt=D,,,or: Q° =n, (m0 ),

~(0)

o = nw(m0 ), M = Ny (mo). The superscript (o) indicates that this is the beginning of the

. . . . 12
process of successive approximations. Actually, n,, consists of n, = (,u/ aj) and of the term
coming from the development. Integrating these equations, we obtain :

Q=n,(t-t,)+Q,

n,(t-t,)+e, < A=n,(t-t)+A (34)

@

M=n,(t-t,)+M,
These are linear, hence unbounded functions of time ; they are called secular terms and

are the largest perturbations.

The next step of the process is to substitute m, and A in the right hand sides of (32), (33),

*

taking also into account that m(t)=m,, A'(t)~ A" = n, (t - to) +A,

H(t)~ H =n, (t-t,)+H,.
After integration, we obtain :

ik S kT —
m=m, —2 - = iA+i A" +hH 35
° Z|nA+| n,. +hny, COS( ) (35)

_ D. e
A=A+Y— "k sin(iA +i"A" +hH) (36)
in,+in.+hny,

Of course, the coefficients C”*k, D . are different for each of the metric or angular

ik

elements.




In this procedure, we have overlooked the fact that the first term of dM/dt is n and not

n,. We have n’a’=y, from which 2An/n+3Aa/a=0, hence to first order

n=n, [1 - 3/2 (Aa/a)]. From (35) we get :

cw

Aa=-73- K cos(iﬂ+i*ﬂ*+hﬁ)
in,+in.+hny

Then :
3n C(?) rw =k Tk 11

n=n, +—= ———"f cos(iA+i"A" +hH)
2a, in,+in.+hn,

So we must add to the solution in M given by (36), with Di(il\:), the integral of these

additional terms, that is :
3n cw@ e
AM =23 ik ~sin(iA+i"A” +hH) (37)
23, (inA+i*nA*+hnH)

All periodic terms in (35), (36), (37) look similar. They are usually grouped in short,
middle, long period terms depending on their period 27[/ (in A+in . Th nH) with respect to the
mean period of the satellite 2z/n, . It is interesting to note that there may exist combinations of
the indices i, i, h such that, for N,.N,..n, being given, the divisor in, +i'n,. +hn, becomes
very small with respect to C... or D.. , thus enhancing greatly the perturbation. This is called a

resonance phenomenon. When the divisor becomes too small, the linear theory outlined above
becomes meaningless and other techniques are required.

If one stops the procedure at the stage of the last equations, we usually do not have a full
Ist. order theory with respect to the small parameter (s) of ® . There exist additional first order
terms coming from the next step, that is when one substitutes m and A as given by (35), (36) and

also (37), in the Lagrange equations and integrate again.

Finally, the form of the Lagrange (or Gauss) equations is such that orbits with small

eccentricity and/or with small sin | cannot be properly treated without care. Either one must

adopt another set of variables, such as (e sinw, ecosa)) instead of (e,a)) - for which there exist



an equivalent system of equations, or one must expand the solution in the vicinity of
e=0, orof sinl =0, and properly re-arrange or group some terms (... which we will do later

when dealing with quasi-circular orbits).



2 THE GEOPOTENTIAL AND ITS REPRESENTATION
2+1. SPHERICAL HARMONIC REPRESENTATION OF THE GEOPOTENTIAL

Let us consider the Earth (E) with its actual shape (grossly approximated by an ellipsoid

of revolution) and its density distribution such that, at the current point P’, the mass element is
dM’ = p(P’)dV ' in the elementary volume dV'. Let (ZO) be a reference system fixed in (E).

The gravitational force at any point S outside (E) derives from the force function (called

geopotential) :
U= GLE)dM '/A (38)

where A is the distance SP’ (fig. 6).

Fig. 6. The Earth and satellite point S

-1/2

1/A iswrittenasr’l[l—2(r’/r)cosz//+(r'/r)2] . Now, if r’'<rforallP’, the term

[1 —2tcosy +t° ]71/2 with r'/r =t <1, can be expanded in a convergent Legendre series :

[1—2tcosx,//+t2]_l/2 = i:t'PI (cosy/) (39)
=0



where P, (x) = { [ x> —1 ] / dx' } / 2'11) is the usual Legendre polynomial of degree . Then

P (cos w) can be transformed as follows. Denoting by (¢',1') the latitude and longitude of P’
and by (¢, 1) those of S, we have :
cosy = singsing’ + cosgcosg’ cos(A —1')

which is transformed by the operator P, as (Legendre addition formula) :

+1

P (cosy) = D (=1)" P, (sing) P,’_m<sin¢’)exp[im(/1 —/1')] (40)

m=-1

In this formula, P,_(x) is the Legendre associated function of the first kind, of degree |

Im
and order m, and is defined by :
m=0:P_(x) =P (x)

m/2

m>0:P,(x)=(1-x*)""d" [P (x) /dx

B ()= (-1)" “‘ WM

(I+m) ™

M being the mass of the Earth (and since P, (x) =1), we obtain :

GM G&(1)' & \ . .

U :T+T . Z (=" r' P,m(smgé')exp(—lml )ydm’ (sm¢)exp(|m/1)
1=1 m=-—1

This expansion requires that S be exterior to the smallest sphere containing (E), let us say

a sphere of radius R. Introducing it as a factor of homogeneity, we obtain :

=== 4R

= GTMi (B) i K P (sin¢) exp(imA) (41)

1=1 m=—|

with :

-n" _ .
K, = (Mle _LE)r" P n (s1n¢')exp(—Im/i')p(r’,¢’,/1’)dV’

The K,, coefficients depend on the shape and density function of the Earth. They are
called harmonics of the geopotential (for U, and ® , are harmonic functions), of degree | and

order m. In practice, noting that K, is real, we define real coefficients C,,S,, foranym> o0 by :



_1+4,,

KIm -
2

(Cn —iSi)

1+0,,
I,—m = 2

(Cp +iS11) E: J_“mg: (—1)" 42)

(where o, =0ifm=#0,9,, =1). When m=0, K, =C,, and S,) =0 and it is then easy to verify

> 00

that ® can be written as :

|
r = m=1

R = CM $ (?) {Cm P (sin ¢) + Z(Clm cosmA + S, sin mﬂ) P (sin ¢)} (43)

The C,, coefficients are sometimes denoted as - J, and are called zonal harmonics, since

they characterize variations of U which are independent of the longitude. The other harmonics

(C,m ,Slm) are called tesseral ; a peculiar case is when | = m and the (C" ,S") are named sectorial

harmonics. Practically, the origin of (ZO) is taken at the Earth’s center of mass and the Z axis

along the mean Earth axis of rotation, assumed to be a principal axis of inertia. This hypothesis

implies that C,; =C,, =S,, =C,, =S,, = 0. Furthermore, we have the important relations :

1 A+B
R

1 B-A
C2=WRT 4

where A,B,C are the moments of inertia of (E) in (ZO> .

In the following, equation (43) which gives the expression of ® in terms of the spherical

harmonics of the geopotential, will start at | =2 . It will also be used with normalized Legendre

functions P,, (x) and normalized harmonics (C S‘T,m) such that :

Im

5Im ' ((Tlmﬁs_lm): le’ (Clmﬁslm)

Im >

702
P 0)=| (2 a0 (0= v, R 0 o

This normalization is such that :



sin“ mA

2
iJ‘J‘unit sphere 5"3‘ (Sil’l ¢) |:C?S2 ml:| COS¢d ¢d A=1

Hence :

(C,, cosmA +8§,, sinm2) P,,(sin ¢)

Il
®
<
E 8
7\
| o
~
M-

o o !
= M Z (B) (_Im cosmA + S, sin m/i) P (sin ¢)

2°2. THE REPRESENTATION OF THE GEOID SHAPE

The geoid is a conventional equipotential surface of the total potential W =U + C, where

U is the gravitational potential, and C is the centrifugal potential of the rotating Earth
(C= [19'2r2 cos’ ¢] / 2 with @ = sidereal rotation rate). This equipotential, in the oceanic areas, is

the surface the sea would have if there was no motion of the sea water, even averaged over an
infinite time (this assumes that mass movements, such as those due to tectonic motions or internal
convection, are neglected in the “solid“ Earth) ; this geoid physical definition is implicity
extended (mathematically valid) over the continental areas. If the Earth was fluid and composed
of (for instance) homogeneous confocal layers, its surface would be a perfect ellipsoid of
revolution. Besides the observed fact that the Earth’s surface may actually be approximated by
such an ellipsoid flattened at the poles, this is why the shape of the geoid is described with
respect to an ellipsoid of revolution, called a dynamical ellipsoid. It is defined as having the same

mass, center of mass and mean rotation axis as the Earth’s ; it has a prescribed semi-major axis
a, and a flattening « = (ae —ap) / a, (a, : semi-minor (polar) axis) ; it rotates with the Earth
with the same sidereal rate @ and its surface is an equipotential of its own total potential

W, =U; +C, (U ¢ = gravitational part) ; conventionally, the value of WE on its surface is taken

equal to the value of the real potential W on the geoid surface.



Under these assumptions, the height, usually denoted by N in physical geodesy, of the
geoid with respect to the ellipsoid, counted positively along the outward normal N to the
ellipsoid is given by (Brun’s formula) :

W-w. U-uU

N = P 75 (45)

with y being the gravity on the ellipsoid : y :‘éWE /éh‘ As a result, and since the ellipsoid

gravitational potential expansion involves even degree zonal terms only, we have :

GM Sy
N = ( jZ(C,mcosm/H—S smmxl) (s1n¢) (46)
Vo= m=0
with :
Cy. =C,, —C,, (ellipsoid) ... ifl iseven
=C,, ... ifl isodd
T =C_ifm>0.

This expression is often used in the simplified form (taking y = GM / r’ and r=R=a,
instead of their mathematical expressions at the surface of the reference ellipsoid) :

N ~ RY(C,, cosm +§,, sinma)P,, (sing) (47)
I,m

Figure 7 shows how the geoid is positioned with respect to the reference ellipsoid. It also shows

other surfaces, close to it, which are relevant to satellite altimetry.

¥5  Ssaclite
(altimster)

Inslantanecys .sea surface
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Fig. 7. Surfaces to be considered in satellite altimetry

N = EG measures the departure of the geoid shape from the ellipsoid.

GI is the dynamic topography (instantaneous), GM its mean value.

An altimeter on board satellite S measures Sl .

If S is known from ground tracking observations and a posteriori orbit determination, then ES is

known ; SI being measured, El is known.

2°3. TRANSFORMATION IN ORBITAL ELEMENTS ; KAULA’S SOLUTION

Our goal is now to use Lagrange equations to derive the main geopotential perturbations

on a satellite orbit. It is therefore necessary to transform ® as given by (44) and expressed in
(ZO), in a function of all six orbital elements. It is clear that r will involve the elements

(a,e, M), whereas ¢ and A will involve |,Q,wand M. The transformation is therefore splitted

into two parts.

2+3.1- Transformation of ﬁm(sinqﬁ) cosmA and ﬁm(singé) sinmA

There are several ways of achieving it. One, originally due to Kaula (hence the name of

Kaula’s solution) starts from the exact expression of P (sin ¢) in terms of powers of sing,
divided by cos" ¢, transforms cosmAand sihnmA in terms of powers of

cos(w +V), sin(w +V), cos|, with the factor exp[im(Q—@)]/cosm¢. There remains a triple
summation which gives the quantities in terms of cosines and sines of the argument
(I —2p)(a)+v)+m(Q—0) with the so-called Kaula’s inclination functions F (1) in factor

(Kaula, 1966).

Another derivation starts from the theorem on the rotation of the spherical harmonic

functions Y, | (¢, /1) =P, (sin¢) exp(imA), when going from a reference system (o) to another



one (0') by three rotations according to the three usual Euler angles W,®,® ; this theorem

states that :

+1

(=M, (¢.4)= D(1-m) 1Y, (¢ 2) EX (¥,0,0) (48)

m'=—1|

The Euler functions E; are defined as :

En (¥.0,0)=(- l)l_m exp[i (m'— m)%} exp[i (MY + m'CD)] Cm (%}

where the C" " are the Clifford trigonometric polynomials :
) Jap (1-m l+m ® ®
cn (—j => (-1 ( _ j ( ' j cos’ —sin*™’ —
2/ T J J\m+m'+ | 2 2

with :

Jig = max(O,—m - m')
i, = min(l-m,I—m’)
v=2j+m+m’

Xo (Greenw{J}

line of nedes



Fig. 8. Angles encountered in Kaula’s transformation

Hence : ¥Y=Q-6,0=1,0=w+Vv. In (0’),wehave/1’=o,¢’=o. We take

advantage of the fact that P

Im

(0)=o0ifl-m" is odd and P, (0)= (1"

(I+ m’)!/{2'[(| - m’)/Z]![(I + m')/2]!} if | —m’ is even. The result is :

(51n¢)exp imA) =i'" mi DImp exp[i(l —2p)(w+v)+m(Q—¢9)] (49)

p=0

with :

= el g

1=h

(50)

(jl = max(o,zp o m), J, = mjn(l -m,2 p))
These expressions are easier to evaluate than the Kaula’s original ones. They are related

to the classical functions F,mp( I) by (m>o0) :

Dlmp( ) =(- 1)|—m+[(|—m)/2] FImP( )

- 51)

o plemyy (T=m)! (
Dl,fm,p(l) _(_ 1) (I +m) Fl,m,lfp(l)

There exist numerous recursive relations between the F , or the D, functions, which

are more efficient for numerical evaluations, especially for large values of I, m, p.
2¢3.2- Transformation of terms containing r and v

We take again formula (41) for ® with P,m(sin ¢) exp(imA) being replaced by (49). We

-I-1

have to transform r exp[i(l —Zp)(a)+v)] =r ! exp[i(l —2p)v]exp[i(| —Zp)a)]. From the

definition of the Hansen coefficients we immediately write :
1 .
ﬁexp[l(l—Zp)V] G ZX' H72P exp (ikM)

(52)
= ZX.‘_';éi;“exp[i('—ww)M]
q=—0



where the second expression is obtained by a change of index : k =1-2p + (. Kaula introduced
the notation :

G (€) = X, 500" (53)

1-2p+q
From (22), it is clear that G,pq(e) zo(e‘q‘). For most geodetic satellites, € is small

(< 107 ), and only terms with q = 0,0 = +1 and sometimes = 2 need to be taken into account

in (52) for sufficient accuracy in the analytical solution.

Using (22) and (53), it is easy to get :

.ifg>o:
e\'d 2p—2lj(—l)t t 02
G,pq—(—zj ;( gt 0 (I—2p+q) +o(e )
When p<|:
2p-2I 21 -2p+qg-t-1
() (g
q-t q-t
When p=1:
e q(_l)q a +
Gy, ( 2) a (q—l) +0(e™?)
.ifg<o:
e\ &( -2p)\(1-2p+q) .
G (5) ;(—q—tj t! +ofe?)
When p > o:
-2 2p—-qg-t-1
Cand = (P20
—-q-t —q-t
When p=o0:
_q I—q
Gloq — (_Ej M+o(e7q+2)
2/ (o)
.ifqzo,G,p0=1+0(e2).One sometimes needs theterminez;it is computed as (t=1,S=0 in

formula (22),and N+ m+1=-2p,n—-m+1=2p-2l,m=1-2p):



E R R A S T

To summarize, we have :

2

e
Gpo =1+ 0 ~+ o(e“)
Glpil = glpil e+ 0(63) (54)
eZ
Glpiz = glpiz 74_ 0(94)
so that :

Gy = Uppo €+ o(e3)
Gl’pil = glpirl + O(ez) (55)

GI’pJ_rZ = glpiz e+o(e3)

where :

0o =[1+(4p-31)(1-4p)]/2

g = (31 —4p+1)/2

O = (4p—1+1)/2 (56)
0y = (1= p)(21-3p+5/2)+(1-2p+2)" /4

O = P(3p—1+52)+(l —2p—2)2/4
2+3.3- Final form of the geopotential disturbing function

Putting together (49) and (52), we obtain :



(57)

0 Il
R = 52(_j zil_m KImz DImp ZGIpq exp I !//Impq

where :
Vima = (1=2p)@ +(1-2p+q) M +m(Q - 0)

Actually R is a real function and, taking account of (42) and (51), adopting normalized

(58)

coefficients (C,m,S ) we find :

© (R N B
R =238 33 R (1) 26 )8 (2.0, M.0)
- (59)

) m=0 p-0
= Rin = Zlepq
I,m I,m,p,q

with

Finp (1) = Vi, Fi (1)

(cf. formula (44)).

S,mpq = C,m COS Wypnpg §Im sin Y imoq
and :

6|m =Cp, §|m =S, ifl-m iseven,

C,=-S,,.S,, =C,, if-m isodd .



2¢3.4- First order perturbations in the elements

The term of the geopotential which dominates the disturbing function is R, since C,,
(or -J. 2) is at least hundred times larger than any other E,m or §,m (it has been found empirically

that the magnitude of these coefficients decrease approximately as 107 / I> - Kaula’s rule). We

can therefore get a fairly good estimation of the major perturbations by restricting ourselves to :
i (RY
Ry = Cy (gj > Fap (1)Gyp(e)cod(2-2p)w+(2-2p+a) M|,
p.q

(written here in non normalized form with C,, ~ 1.082628107%).

Following the successive approximation technique described in 1.4, we first get the

(main) secular terms on Q,w, M from the above, with p=1and g =0, thatis:

ERDIEWE

7,
Rzolo = Eczo ( a
where :

Fy, (1) = 3/4sin | —1/2

GZIO(e) = (1 —e’ )73/2

From the last three Lagrange equations, we find :

, exactly.

3 R 1
Q.. =n, =Enczo(gj mCOSI

. 3 R 1
o, =N, :chzo (gj m(l—SCOS2 |) (60)
R

M, =n, = 3c(j2 L (3cos’1-1
sec_nM _n_Zn 20 ; m( ({0} - )

These are very important formulas. They show that the mean orbital plane has a
precession motion which is retrograde if 0<1 <90 (since C,; <0) and prograde if
90°< | <180° (at this degree of approximation, it is extremely small for | =90°) ; the line of

apsides rotates (motion of ) in this orbital plane clockwise if | > |, counterclockwise if | < I,



with | ~63°26" ; | is the critical inclination and the periapsis undergoes a peculiar libration

motion when | = I (in what follows, we will always assume that | # | ) ; finally, with respect to

the mean motion n (in the absence of perturbations), the satellite goes faster on its orbit if | <1,
and slower if | > I, with 3cos’ I, ~1=0 (I, ~35°16’).

In reality, it is easy to see that other terms, namely the zonal harmonics C,, , (of even
degree), for k > 2, also give secular perturbations which can be computed as above in a first

approximation ; in the following, we will assume that Q__,®

sec ? “sec ? sec

(denoted simply Q @, M )
contain these perturbations.

One must realize that there is no mean to have secular perturbations on a, e, | with this
type of disturbing function.

To finish with, we apply the remaining of the procedure described in 1.4, and we obtain
(including the variations in M resulting from changes in the mean motion n, arising from

perturbations of the semi-major axis) :

Aa =) Aay,, (61)

Impqg
where « represents anyone of the orbital elements, and the (Impq) set of indices is such that it

does not produce any secular effect (already included in Q,®, M = n), that is Winpg # O-

The A for the metric elements a, €, | are of the form :

Aty = Cir[3.8.1.00.5, M5, (0.0, M, 6) (62)
and for the angular elements Q,w, M :

Aty = Cir[3.8.1.Q2.5, M8, (0.0, M, 0) (63)
where : a,g,| are the mean values of a, e, I, as opposed to their osculating values

a= E+Z(Aa,mpq), etc ..., and 5,5,m are the mean rates of Q,w, M evaluated with the

secular terms as said above ; that is for instance, Q(osculating) =Q, + Q( )+ 2AQ L, -



Simpg 18 as 1n (59), and SImpq =C,, sin L — S, cos Yimpg - Vimpq 1tself is evaluated with

Impg
the mean angular elements Q_ + ﬁ(t -t ), w, + 5(t — to), M, + ﬁ(t - to) and with
=6, + é(t - to). In the remaining of this course, we will drop all the overbars to simplify the

notations since there should be no confusion : first order perturbations are evaluated with the

values of the mean elements.

The Cp,, coefficients are the following :
Cl?npq 2AGyy, (I —2p+ q)/l/}lmpq

Ciopg = : Ging [V 1-e’(1-2p+ q) -2 p)]/l/}lmpq

i A

1 .
Cl =2 G 1-20)cos1 - (64

ce =2

L R
™ a snii—e

1| v1-¢? I
Clan;pq = AG qu S Ipq V)Impq
a e sin l+/1—

—e' |-2p+q)n] /.
{2(|+1)Glpq — G~ 3Gy (-)}/V/Impq

lr//Impq

CM

Impq

=

with :
RY _
A= na(gj F,mp(l)

R)' _
A= na(gj Fup (1)
As an example, we have computed the perturbations for the TOPEX-POSEIDON satellite

with the following mean elements a=7714410m, e =9.3107,1 = 66°02. They have been

converted to rectangular coordinate perturbations in the Gauss system by the method which is the
subject of chapter 3 for all I, m, p, q’s.
R. Rapp’s 1991 global geopotential model truncated at degree and order 60 has been used,

and |q| limited at 2. Then, since the perturbations for given (C S, ) are composed of many

Im >



frequencies, the r.m.s. has been computed. The diagram on figure 9 shows the r.m.s. perturbation
in position, in meters, for each couple of harmonics (for low degrees and orders, the perturbations

are quite large and their graphic representation was truncated ...).

TOPEX : POSITION (METER)
= ABOVE 23
22 - 23
[ ] 21~ 22
20 - 21
19 - 20
= 18- 19
17- 18
[ ] 6 - 17
[ ] 14 - 18
[ 13- 14
[ ] 12- 13
] - 12
] 10- U
HR os- w
HE o8- o9
[ | 07 - 08
BB os- 07
Bl os5- os
Bl o4- 05
[ ] 03 - 0.4
] 02 - 03
[ ] 01~ 02
B -o00- oa
oA -0.1 - -0.0
~03 - -0
(2 —04 — -03
[-] -05--04
L] -06--05
C] -07-~-08
1 -08--07
-09 - -08
% -10 - —0.9
BELOW -10

Fig. 9. Diagram of r.m.s. perturbations in the position of the Topex-Poseidon satellite.
2+3.5- Choosing the orbit of a satellite

It all depends on the usage of the satellite, of the on board sensors and their operational
constraints.

The mean motion is quite important for it is the major angular parameter which very
directly interacts with the sidereal time rate & and it conditions greatly the overall coverage. The
mean semi-major axis which corresponds to it immediately places the spacecraft far enough from
the Earth’s upper atmosphere or directly in it (e.g. from 200 to 1 000 km) which may entail
problems as concerns the mission life-time, the proper operation of some sensors, the attitude and
orbit controls of the satellite ... ; also, one must note the decrease of the geopotential
perturbations as (R/a)I , (apart from sharp resonance cases), of which one may take advantage,
for instance in the case of geodynamic satellites (e.g. LAGEOS). The mean eccentricity will
usually be rather small, so as to operate at more or less constant altitude, apart from variations

due to the radial orbit perturbations and due to the Earth’s flattening. The inclination is a very



important parameter since it is through it that the orbital plane precesses and, for many sensors of

geodetic and Earth observation missions, it governs the coverage one finally obtains thoughout

the mission.

Important cases are : the polar inclination by which the orbital plane is practically fixed in
space (if the altitude is sufficient to neglect the effects of drag) ; the heliosynchronous case in
which the orbit plane follows (approximately) the motion of the sun with respect to Earth, that is
Q =360°/3652422 d = 0.98565°/day (it cannot follow the sun exactly since the right ascension
of the sun does not vary linearly but has additional periodic terms which depend on the Earth
mean anomaly, eccentricity and obliquity), which requires an inclination generally in the range of
96° to 100° : | (helios.) = cos"[—4.784204.10"15a7/2 , withainkm.

In all cases, figure 10 illustrates how successive tracks are placed with respect to the
Earth, from which one can derive algorithms to compute the coverage of the ground tracks or to
determine repeat orbits. The algorithms are based on the value of the longitude interval, AA,

between two successive tracks, with respect to Earth.

G.M(t+ N )

oy

track[i],/‘ track[i+ 1]

/
N(t+ Ty )7
N (1 ’/ 4‘——#/
7(, )2 —1 (Eq)
A ’
R i NP Lo
oA(t+Ty )

Fig. 10. Geometry of successive tracks

N : ascending node



Ty : nodal period

G.M. : Greenwich meridian

Eq : Earth equator

We have :
A= 2(t+T, )= A(1),
:(Q_Q)TN

where (¥ is the secular drift of the ascending node and Ty the nodal (draconitic period), given by

Ty = 27[/ ( M + a))
with, as before :
M = “mean“ mean motion (M > O)

@ = secular drift of argument of periapsis (|a)| << M)

0 = sidereal time rate

Two types of problems can then be solved :



(a) Resolution at the equator versus time :

Let us call p; the resolution on the equator after a time interval AT; counted from the
beginning of the mission (with AT; <AT,,,...), that is after an integer number of nodal

revolutions, K;.

We have :
AT, = KTy
and we write :
Py =RA,
where R is the (mean) Earth equatorial radius.
At the beginning, we have :
p, =27R and K, =1

Then the series { P; AT, } _is given by the following sequence :
J

- let us define :
Jifj=1 0 A =27, A=Al

ifj>1 : B, =q, A~ A,
A=A,

A; = inf(B;.A - B)
- then, forall j>1 : q; = [Aj JA+ 1] ,[...] = integer part
K, :[27z/AJ- +1/2]
P =RA,
AT, = KTy
This algorithm takes account only of ascending or descending passes. If both types of
passes are considered, which is reasonable if the orbital eccentricity is small - that is the

spacecraft altitude will be almost the same at the descending and ascending nodes and sensor

“operation* conditions may be similar too, the actual resolution will be between p /2 and g .



Finally, if one is interested in the mean resolution at some latitude, resolution numbers must be

multiplied by the cosine of that angle.

(b) Determination of repeat orbits of given repeat period :

A repeat orbit is characterized by the existence of integer solutions {h, k}, heN,k eZ,

to the following equations :

hTy =T,
L @+M h
h(€Q-6)T, =2k, or - =— (65)
-6 Kk
where notations are as before and the given repeat period is T, . Being given a,,€,, |, (usual
metric elements), and allowed intervals of their variations : [ao —Aa,a, + Aa] =A,

[eo —Ae,g, +Ae] =E, [I0 —AlLl, +AI] =J, one searches the possible values h;,h,...h —and

associated values (K) which may satisfy the equations for a €A, e €E, | €J. Actually, the h’s

are all consecutive, that is h, <h<h_ (and h, =h_, +i—1) and, for a given h, possible

values of k are found to be between k . (h) and k__(h). There may be no such value for a given

Trep.

For any couple of values (h,k) and a given value of e in E, one then tries to find a and
| so that @ (a,e,1),M(a,e,1),Q = (27Z/TN )(k/h) + 0 satisfy exactly the system.

There may be no solution, or sometimes solutions outside /4 and J.

The physical interpretation of the repeat orbit is that the ground track repeats itself after h
(nodal) revolutions of the satellite in the orbital plane and after k revolutions of the orbital plane
itself about the Earth’s mean rotation axis and with respect to the Earth’s surface :
T =Ty =KT, 4.

In reality nearly every circular trajectory resembles a repeating one since any real value of

(a) + M ) / (Q - 9) may be approximated by a ratio of two integers. A practical problem might be



that the integer values become quite large for an accurate approximation of this ratio ; therefore
one usually limits oneself to repeat periods which are less than a few months or so.

The longitude spacing of the ground tracks is obviously 360°/h. For example, SEASAT
had in its last month a repeat orbit at the mean altitude of 790 km with | = 108°, resulting in

h/k = —43/3, hence a longitude spacing of the ground tracks at the equator equal to
360°/43 = 8.37°, TOPEX-POSEIDON, with a = 7714.5 km, e = 9.5 10~ and | = 66.039°, is such
that (co +M )/(Q - 9) =—12.7 =-127/10, hence a longitude spacing of 2.83° for a repeat period
0f 9.92 days.

It is interesting to look at the spectral characteristics of repeat arc differences in this case.

All orbital elements being expressed, as in (62) and (63), as Fourier series with coefficients
which are functions of the mean (fixed) metric elements, a(t + Trep) —a(t) is the product of such

a coefficient (independent of t) by a sine or cosine of :

l//Impq (t + Trep ) - l//lmpq (t)

Writing Vimpg = 1 —2p+0)(@ + M)+ m(2-60)-qw,  taking  account  of

Tep = h27z/(a') + M) = k27z/(§2 - 9) , and then of Q(t +T,

rep

J=a@+ar

rep *

a)(t+T ):a)(t)+a)T

rep rep

M(t+T,,) = M(t)+ MT,,, we find

rep »

l/llmpq (t + Trep) - l//lmpq (t) = [(I -2 p+ q) h+ mk]27Z'— qa')Trep

To the order 0 in eccentricity (q = 0) , we find that the argument after T, differs by a

r
multiple of 27 ; therefore the differences of any two elements are equal to zero. In particular, the
radial perturbations are the same on any ascending or descending arc ... but not necessarily at a
cross-over between an ascending and a descending arc (it can be shown how they actually differ -

see, for instance, Balmino, 1993). The term qa')Trep causes this result to be approximate : we can

only say that all short periodic perturbations due to geopotential model errors are eliminated in
repeat arc differences. In the case of a frozen repeat orbit, we have @ ~ 0 and we can expect the

effect of qwT,, to be negligible.



2+4. THE DETERMINATION OF A GEOPOTENTIAL MODEL-OVERVIEW

Global modeling of the Earth’s gravity field has been a concern since the beginning of the
artificial satellites era. Observing the trajectories in space of such proof-masses allows in
principle to determine the forces which act upon them and compute the coefficients inherent to
their parameterization ; this is the oldest inverse problem of celestial mechanics. In practice,
however, trajectories are observed from ground stations (sometimes from another satellite) by
means of ranging devices (radars, laser system which now reach centimeter precision), range-rate
measurement apparatus (measuring the Doppler effect), even tracking cameras which observed,
in the old days, the directions to the satellites on the sky background. All these instruments have
limitations (biases and noise) and, since satellites must be flown at a minimum altitude H if we

want to live long enough (say above 350 km for a life-time of a few months - without

manoeuvering the orbit), the attenuation factor [R/ (R+ H)]I ultimately limits the degree | (and

order m< 1) to which we can determine the spherical harmonics of the geopotential.

Another important fact lies in the frequency spectrum of the geopotential orbital

perturbations, which comes from the decomposition of the disturbing function ® as given by (59).
We can re-arrange the quadruple summation over (I,m, p,q) as follows : for a model to be

determined up to degree and order L, we first write that :

Then, changing p into kK =1—-2p, gintos=1-2p+q, interchanging the summations over | and

k and finally limiting the series in G, () to |q| <Q, we readily find :

Ipg

L L !
M ik (2] p !
R=§Z > i""K, (Ej Dl,m,(l—k)/Z(I)GI,(lfk)/zaS*k (&) fexp (H//ksm)(%)
m=0k=—L s=k-Q [l:max(m,Z,\k\)j
I-k:even

with : ., = ko +sM +m(Q—-6), and D,,, being the normalized inclination function.

Imp



From (66) it is obvious that several harmonics (an infinity when L — o) give rise to

perturbations of the same frequency. By varying S, one goes from the so-called m-daily

perturbations (period = 27[/ (m 49) whens =0, with @ and Q << 0) to short period perturbations

(s # 0) which all involve the same K, harmonics. For a given distribution of tracking stations it

is usually not possible to observe well enough the orbit, that is to sample well enough the
perturbations it undergoes, and the resulting observation equations are then insufficient to
separate the different harmonics. That is why, with this approach of geopotential determination, it
is necessary to have several satellites with varied altitudes and especially inclinations so as to get
very different coefficients in the bracketted term of (66), hence independent observation
equations for the harmonics. A very favourable situation is also when the orbit is in shallow
resonance, that is when there exist (I, m, p, q) or equivalently (k, s, m) sets of indices such that

Vien <<N (¥, may eventually come to zero in cases of sharp resonance, but these are transient

phenomena). Neglecting @ and Q with respect to n and @, such a situation occurs when

sn =~ mé. If n is expressed in revolution per day, we have approximately n ~ m/s. When n is an

integer, the main resonant  perturbations are with coefficients K,,

(s=1), then with K, , (s =2), K| 5, (s=3),--; if n=r/2 (r : integer), resonance occurs with

H 1,3n

K, (s=2), K (s=4), and so on ... These enhanced perturbations allow to better determine the

corresponding class (es) of harmonics. Finally, we remark that, if we have a polar satellite

mission which results, after some time, in a ground track pattern with equatorial inter-track
distance A4, and if observations are made along the orbit at least every (A/ R) / n seconds (N is here
in rd/sec), then the data sample allows, in the perfect case, to recover all harmonics up to degree

and order L =~ [ﬂR/(2A)] .

Most accurate geopotential models have also been determined by combining satellite data
(from which satellite only solutions may be computed) with surface gravity measurements and
also satellite derived geoid heights from past altimetry missions (Geos 3, Seasat, Geosat, ERS1-2,
TOPEX-POSEIDON) - after correction for sea surface topography (the difference between the

ocean surface and the geoid), from a model, or by simultaneously determining it. Equation (46) is



the basis for performing this combination as far as the geoid height is concerned. A similar

equation exists for the gravity anomalies Ag derived from surface measurements : A9 = 0, cacured

(reduced on the geoid) — 7y aiipsoig (0N the ellipsoid) is the basic quantity used in this case (y is

the theoretical gravity - it is called “normal gravity) ; the relationship between Ag and the

geopotential harmonics is :

» RY' <, B _
Ag = rﬁzZ(l ~1) (?j > (Cycosmi+S,, sinma) P, (sing) (67)
1=2 m=0
where C, is as in (46). Such equations are in general rewritten for mean values which are

derived from real measurements (or sometimes from predicted anomalies - with a larger
uncertainty, to avoid artefacts in the poorly covered areas).

As an example of what can be obtained from the above described techniques, figures 11
and 12 show contour maps of the geoid height and predicted errors of one GRIM 4 (combined)
solution (Schwintzer et al., 1997). Usual features in the geoidal surface are visible, and the errors
accumulate over land areas not well covered by gravity data (altimetry data were used over the

oceans, thus providing a much better control).

Fig. 11.

Fig. 12.
3e AN APPLICATION : THE RADIAL PERTURBATIONS DUE TO THE

GEOPOTENTIAL

The radial perturbation, Ar, on a satellite orbit due to the geopotential may be derived in
various ways, and with various approximations. One approach uses the Hill equations (Schrama,

1989), others start from the Lagrange equations and Kaula’s formulation of the solution (Wagner,



1985 ; Rosborough, 1986, Engelis, 1987). Here, we will also start from the analytical expressions

of the orbital perturbations derived from the Lagrange equations (formulas 64) and from
r (a,e, M) as given by (13) or (17). We will first derive the perturbations of order 0 and order 1

in an elementary fashion, to show some of the traps which are encountered when working with
almost singular elements (€ = 0 usually), also to correct some mistakes made in earlier works in
the terms of order 1.

We will therefore write :

Ar = Z(Ar,;p + Al +- AL ) (68)

I,m,p

where the superscript stands for the order in eccentricity.

Perturbations in the two other orthogonal directions (transverse and normal) may be
derived in a similar way. The transverse component is Az, derived from

At =rAy =r(Av+Aw + AQcos|) ; it can be evaluated from (18) and from the perturbations in

M,®, and Q. The normal component, AC, comes from

Al = r[AI sin(@ +Vv) — AQsin | cos(w + V)] , requires to expand cos V and sin v by (19) and (20).

Perturbations in all three directions will be given in the conclusion for completeness.

3¢1. RADIAL PERTURBATIONS OF ZERO AND FIRST ORDER IN ECCENTRICITY

We start from (13) truncated at €% : r = a[l —ecosM —e? (cos2M — 1)/2] from which,

by differentiation, we obtain :

Ar=(1—ecosM)Aa+ale—cosM —ecos2 M) Ae + asin MeAM

To obtain Ar°® and Ar', we rewrite Ar as :

Ar= Aa........ with terms of order 0,1 ine
—eAacosM........ 0
—aAecosM......... 0,1
+eaAe........oeiienn. 0



+aeAM sin M

0,1



Now we use (64). We take advantage of (54), (55) and (56) and we keep terms with :
.q =0,+1,—1 for Aa

.q =0,+1,—1 for eAM and retain g, for G, (and 1— e’ ~1)

Ipo

2

€
. = 0,£1,+2 for aAe expanding /1 —¢’ (I -2p+ q)—(l —Zp)as ~ —(I —Zp)?+ q ;
therefore the singularity disappears when (=0 ; also, there is no singularity in e for

q = +1 due to eg,,,, ; finally the remaining v1- e’ term is replaced by 1, and q = +2

generates a term in €.

Hence, dropping other e’ terms which are generated by these choices of q and following

the prescribed orders per term in Ar :

-2 —2p+1 l—2p—1
Aa=2A{. pS +e$g S +-—pglplslmp1j|}

Impo . Ip1 ~Impl
l//lmpo L l/llmpl Imp-1

I-2p
—eAacosM =-2A) e|——S,cosM

g Jip-
—aAecosM =-A ¢S|mp1 cosM — — Simp_1 COs M
Imp1 l//lmp—l
-2 g Oip-
+e —,—pS,mIDO cos M +_I—pZS,mp2 cos M + —2 Simp_2 COS M
2l/llmpo l/llmpz !//Imp—z

eaAe={ e 9|p1 Simpt ~ glpfl Simp-1
l//lmpl l//|mP*1

9 9
—eaAecos2M =-Ay e .I—pls,mpl cos2M — —2 Simp1 €082 M
l//lmpl l//lmp—l
. Op1 o . 9 .o
aeAMsinM = Al ——= Simpr SINM —— s Simp1 in M
l//Impl l//lmp—l

Impo Impo

+e[[2(l +1) =g, - 3(1 —2p).L]#s,’;npO sin M]}
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Now, recalling the expressions of S, and Slmpq » and noting that .., £SM =y, ..o We
form :

Slmpq cosSM = (S|mp q+s Imp q- 5)
Slmpq SlnSM = %(Slmp g+s |mpq S)

. 1
Slmpq cossM = (Slmp q+s |IT1P q- 5) (69)

1

SImpq sinsSM = E(Smpﬂq_s = Oimp, q+s)

Collecting the terms of order zero, we get :

21—
Imp =A p - glpl glp 1 SImpo (70)
l/llmpo l/llmpl l/llmp 1

(four terms, with S, ., and S have cancelled out ...).

Imp-2»
When | -2p=o0and m=o0, the first term is actually zero (the factor | —2p cancels the
term before integration), and there remains a constant term :

_ A{_ Orpp1 , G2pp }5

2p,0
Yapopt  ¥Yapop-i

Ar

2p,0,p

This formula also shows that semi-major axis perturbations with frequencies
Yinpo = (I -2 p)(a) +M ) + m(Q - 49) produce radial perturbations at the same frequencies ; it also
implies that perturbations on a at any other frequency (q #* o) produce much smaller radial

perturbations. It is also seen that the term in Ae and AM which yield the largest radial

perturbations have the frequencies v, ., and produce terms at the same (previous) frequencies
Yimpo - A major consequence of this is that the long period perturbations on e and M result in short

period radial perturbations. For example, if m=o0and | —2p =1, we have perturbations on e and

M with frequency @, due to the odd degree zonals ; radially, they induce a perturbation with
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frequency @ + M (once per revolution). Due to the usually large amplitude of such long period

perturbations on e and M, the short period radial perturbation on r is also quite large.

The terms of order 1 give a more complicated result. After some algebra, one finds :

C+l C+1 C+1 C+1
Aty = Ae (,1 +——t——+——| S,
l/llmpl l//lmpo l/llmpz l//lmp—l

c c,' c, c’
+( "+ —— S, | (71)
‘//Imp—l l//lmpo l//Imp—Z l//lmpl

C+3 C+3 C—3 C—3
( . : +—= 2 jslmpS +( . - +—= = SImp—3
l/llmpl l/llmpz l//lmp—l l//lmp—2

Formula (70 is in agreement with previous works of other authors. In (71), we have :

C'=(31-4p+1)(1-2p+3/2)

Ci' =5 (p 1)1+ (4p-30)(1-4p) + S (1-20) /4
;' =%{(p—|)(2l—3p+§j—%(|—2p+2)2}
c*f:%(4p—|+1)

Cl=(4p-1+1)(1-2p-3/2)

C' =5 p+ 1= (4p=31)(1-4D) - (1~ 20)/

5 =—%[p(3p—l+§j +%(|—2p—2)2}

1
cl = —Z(SI ~4p+1)

These are the terms found by Rosborough, with (it seems) a missing factor (1/2) for
C,',C, C;" and a factor (- 1/2) for C_,.
This author forgot the four other terms, which are :

Cl+3 :_glpl/z
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Cz+3 == glpz/2
C—_13 = glp—l/2

C:23 == glp—z/2

It is interesting to quote another form of formula (70), derived by Wagner (1985). Making
the substitution of indices (I, m, p) - (m, K, I) already encountered in (66), denoting

Winpo = Wiaan = Wo (then ¥, =7, £n) and then 7, /n= B, =k(1+@/n)+m(Q-6)/n, it is

easy to transform (70) into :

M may 3 Y )(Bj'ﬁ B (141) =2k

Im,(l—k)/Z(I) ,@ (ﬂz _1) Slm,(l—k)/z,o (72)
m \/~km

32. GENERAL FORMULATION OF THE RADIAL PETURBATIONS

We start from (17) for r and we follow Rosborough (ibid) :

r= ai H, cossM

§=0

with :
H, =1+¢€*/2

B 2e d

. ——?E[Js(se)], for s>0

We define H; = dH,/de, and find easily :

Ar = Aa(z H, cosSMj + aAe(Z H! cosslvlj —aAM (Z sH, sinsM] (73)
We then apply (64) and, for a particular set (I ,m, p,q) we find :
ANy = A8y, Z H, cossM
+ade,,, Z H.cosSM (74)
q
—aAM,,,, > sH, sinsM
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Looking at this series term by term, we have for any combination (I, m, p,q, s) :

Alpoes = A3y, Hg cossM +aAe  H! cossM —aAM, . sH, sinsM (75)

Impg

Since Js(x):o(xs), H, is of order e®, that is the perturbations decrease with S

increasing. Replacing Aa,, . by Cp. .S

mpa etc ... we get an expression with products

Impq >

s

Simpg COSSM, S, sinsM, S, sinsM, which we transform by (69), hence :
1 a e ’ M
Mg = 5 (i H, + kg HI +aClsH, )8,
H(caH, +aCh, HI—acy, sH,)s
+ 9 \impg s +80umpg Mg =8 Lnpg SH Impq (q-s)
If the range of s is changed from 0to +o tobe —ooto +o and the functions ﬁs is
defined as :

H, = H,
H =H,/2,H, = ﬁs,(s: 1,2,...+oo),
then we can write in a compact form :

Ar,mpqs = Clmpqss|mp(q+s)

where :

- Ca

Impg

~ e .
C,mpGIS H, + aCImpq H! + aCImpq sH,

The total radial perturbation is written :

We can make the following changes of indices :
q’' =g+ s:q’ range is — 00,+©

s'=q :s'rangeis —oo,400

and then rename (' as being  and S’ as being S, and we obtain :

Ar = Zzz ZArlmpq (76)
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Alinsa = CingaS (77)

Impg ~ Impq

and :

C"“Pq - chmps(q—s)

T (78)
= Z C:Ierlnps I_~|q—s +a CI?nps F'é—s + a(q - S) Clmps I:Ilq—s

This form shows that the radial perturbation amplitude at a given frequency
(I,m, p,q given) depends on the perturbations on a, e, M at that frequency (S=q in the

summation) and also of an infinite number of different frequencies (other values of s).

3¢3. FREQUENCY SPECTRUM

We start from (77) and want to identify all terms of different frequency. From the form of

Simpg @nd ¥, we infer that we must distinguish between the zonal (m=0) and non-zonal
terms (m > 0) . We found also simpler to start from a formula where the frequencies are indeed
identified by three indices k, g, m (cf. formula (66) for ®) : y,,, =k (w+M)+gM +m(Q-6).

From this, it is clear that :
- when m=0: terms of all different frequencies are obtained for :

.k=0+gand —qbutq=o0(q=0 gives a secular term)
ko O:(k,q) and (— K, —q) SINCE Y 40 = Vi
- when m> 0: all terms with different (k, q)‘ s generate different frequencies.

Hence, writing that we have a model truncated a | = L and that q is limited to |q| <Q:

+L  +Q

L
IZClm,(l—k)/z,qSlm,(l—k)/z,q (79)

min

3
I
o
=~
Il
|
-
Qo
I
o)

2,1kl m) and | — Kk being always even in the summation, we have :

z
=
=
Il
g
>
—~~
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- for the zonal terms :

. When k =0:
Q L _
Z|:Z(C|o,l/2,q + CIO,I/Z,fq ) Cp }Coqu
q=1L1=2
.whenk >0
f Z(C ( l)' C )(_: (Cosj k:even
q=-QL I lo(1-k)/2.0 - lo,(1+k)/2,-q | ~lo sin k:odd Viae

These two cases can be compacted in :

Q
Ar("':o) - Z[Z(Czjso-i,q + CZJ.O,J',—Q )C2j,oj| COSYWoqo
J

y (80)
L Q k o COS even
+ Z Z Z(Ck+2j,o,j,q + (_ 1) Ck+2j,0,k+j,—q ) Ck+2j,o sin l//kqo
k=19=—Q[ ] k:odd
This has been derived by setting | —k =2, and we have j running from j__ toj . :
i = max(0,1 - [k/2))
jmax :[L_k]/z
- for the tesseral harmonics, using the same transformation of indices, we find :
+L +Q Jmax N
Ar(m>o) = z z ZCK+2j,m,j,qu+2j,m COs lr//kqm
k=—Lg=-Q §= Jmin
(81)

jm,aX
+ [ Z Ck+2j,m,j,q Sk+2j,m} sin l//kqm :l

§= Jmin
where we now have :
Join = max(o,l - [k/2],—k,[m - k]/2)
Joux =L —Kk]/2, as before.
By letting the indices run as indicated, that is for m=0:k =0toL, q=-Qto Q (q # 0) :
and for m>0:k =—L to +L,q=-Q to +Q, we obtain all terms of different frequencies.

The amplitudes are obtained by :

.m=o0,k =0 Z[(Czj,o,j,q+C2L0,jrq)c_:zj,o :q=1t00Q

J
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.m=o0,0<k < L:

;9=-Q to +Q

v _
Z[Ck+2j,o,j,q +(-1) Ck+2j,o,k+j,—q]ck+2j,o

J

2 2 1/2
.m> O,—L S k S L:[(ch+2j,m,],q C~k+2j,mj +(ch+zj,m,j,q S~k+2j’mj } 9 q = _Q tO +Q
] J

As an example, figure 13 shows the spectrum of the Topex-Poseidon radial orbit

perturbations based on Rapp 1991 model truncated at degree and order 70.
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Fig. 13. Frequency spectrum of the Topex-Poseidon radial orbit perturbations

3+4. RADIAL PERTURBATIONS BY COEFFICIENT, BY ORDER, BY DEGREE

We will derive the r.m.s. perturbations for : each pair of coefficients (C,m,S_,m) , then for

all coefficients of a given order m, finally for all coefficients of a given degree. Depending on the

case, we will use one form or another, such as (76), or (80)-(81), of the radial perturbations,
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which is most suited to identify the different frequencies in order to take properly the r.m.s. of the

adh’oc terms.

3¢4.1- For a pair of coefficients

We start from (76), for | and m fixed, that is :

Arlm chlmpq Impg

p=009=-Q
Then :
< Ar.Im >= Zz Z chmpqclmjs ImpqSImjs >
p=0 j=0 ¢=-Q s=-

Recalling the form of S it is clear that the means < ... > are zero unless .. = Ty

Impq >
This condition is satisfied when :
*m=0:j=p,s=(¢ and j=1-p,s=—(Q ; thatis:

2
_ cos 1
< SI%)pq = CI§ < (sinzj l//lopq > = Eclg

where < ... > is taken over the smallest common multiple of all encountered periods.

___(cos cos
_ 2 . . . . .
< SiopqS104-pq > =Cyp (sinj Yiopq (sinj Yioip._q 1N distinguishing between | even (cos ...) and |

odd (sin ...) ; hence <...>=—(1)' C?/2 in this case.
Therefore, for a zonal term :
< Ar.Io > = _Clo Z Z [Clopq Iopq CIo,I—p,—q:I (82)
p=00=

*m> 0: we simplyneed j = p,S=Q

Since < Sy, > = % (C_J,fn - S_,fﬂ> we have :
> (e +s2) Y Y ek, (83)
p=00=-Q

The r.m.s. follows by taking the square root of (82) or (83).
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3¢4.2- For a given order m

We already identified precisely the indices yielding different frequencies.

*m=o0 : we start from (80), square Ar, and take the average ; hence :

2

[Z(sz,j,q +Cz;',o,1,q)c_:21,o}
1 & Q ; _ 7T
+EZ Z {Z (Ck+2j,o,j,q +(=1) Ck+2j,o,k+j,—q) k+2j,oi|

*m > 0 : starting from (81), we readily find :
l & < ~ ’
<Ay =752, 2 HZ CrzjimiqCuua j,mj
] L (83)
+ (Z Ck+2j,m,j,q §k+2j,m) ]

In (84) and (85), the range of index | is as prescribed in (80) and (81). From these, it is

2
<Al > =

(84)

O

easy to find the full field perturbations in summing over all orders (since frequencies of all terms

of different orders are all different), that is :

12
r.m.s.(Ar) [Z< Ar, >} (86)

34.3- For a given degree |

We here start from (76), for | fixed, that is :

Ar(I) - ZZ chmpqslmpq
m=0 p=0q=
Then :

R
< Ar(f) >= ZZZZ z chmpqclkjs < Simpg Sikgs >

m=0 k=0 p=0 j=0q=-Q s=

If m =k, frequencies are necessarily different and < ... > is zero. Hence we are left with :
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| | | Q Q
< Al’(f) > = ZZZ Z zclmpqclmjs < SImpqSImjs >,

which is nothing but :

3
T
o
k=]
i
o
T
o
o
]
I
Q
P
i
I
Q

|
<Ar) >=D <Ar > (87)

Therefore it suffices to add the terms of (82) and (83) for | fixed.

As examples, fig. 14 and 15 give the radial perturbations by order and by degree which

are computed for Topex (model truncated at degree and order 50).
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Fig. 14. r.m.s. of the Topex-Poseidon radial orbit perturbations by degree

1

]

RADIAL RMS (

19p-?

0.0 5.0 0.0 8.0 20.0 .0 30.0 3.0 0.0 +5.0 0.0
ORDER

60



Fig. 15. r.m.s. of the Topex-Poseidon radial orbit perturbations by order

4e CONCLUSION

We have given the readers the basic tools to evaluate the static gravitational perturbations
of the Earth on a mean satellite orbit, when a gravitational model is given as a series of spherical
harmonic coefficients. These perturbations have been explicitely written for the elliptic mean
orbital elements, as well as the magnitude of the radius vector which variations and spectral
components are fundamental quantities involved in satellite altimetry.

For further investigation of gravity field recovery capabilities of some satellite systems, it
is also necessary to have the perturbations on the transverse and normal components of the radius

vector, and sometimes on other quantities, too (e.g. gravity gradients). Adopting the notations
(Ar,Ar,A{ ) = (AU,AV,AW) already used in the derivation of the Hill equations, and assuming a

quasi-circular mean orbit, we have the following non resonant perturbations (cf. Balmino and

Perosanz, 1995) :

Au L Qu Timk
A amlk[Z]( ) Bon — gw ?:nkk (88)
where :
Qu = Pz [Ba(1+1) =2k /By
Q = Fonge 28 1+ )=k (3+ 82 )]/ 82, (89)
Qu =5 (Binics = Dot ~ Eimics = Erns)
and

Tk = Cim €08 X + S, sin X,
* & ~ .
Tk = O €08 X, — C,,, sin X,

D = 0| |1 (90)

Eime = Finqiyz (kcos T —m)/sin |
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In those expressions, the quantities : R,a, |, F,.,C, andS, are as previously defined.

Imp >
Furthermore we have :

Xim =k(@+M)+m(Q-0)

@m = ka/n

As before, n is the orbital mean motion. £, already introduced in formula (72) which gave Au,

C2))

is therefore a frequency expressed in cycle per revolution ; its module is different from 1 in our
case (non resonant). The summations in equation (88) run from m=otolL, | = max(m,2) to L,
and k=—-I to +1, where L is the maximum degree and order at which the gravitational
potential series are truncated. In addition, one must have |—Kkevenfor Au,Av and
| — k odd for the Aw component. Of course the perturbations in velocity may be obtained by
simply derivating those expressions with respect to time.

Other functions of the perturbations may be of interest, for instance the variation AV of

the total velocity. Using the kinetic energy equation (6) we find :

AV = u/N (1/2 Aaja* - Ar/r?) (92)
Aa is taken from equation (64) and Ar = Au from equation (88) above. The result is, again for a

quasi-circular orbit :

AV = a(Ejl ! Q i (93)

2
m, |,k [1-k:even] a ﬂkm - 1

with :

Qu = NP [K(1+ A2) - (14D B, ) i &9

Also of interest is the relative velocity perturbation between two co-orbiting spacecraft
separated by a mean angular distance «. This perturbation, Ad , is expressed when « is small
(<10°) by :

|

Ad = [Z]a@ o ©95)
where :

Q, =2Q, sinke/2

' S ' ~ . ' (96)
Trk = Sy €0s X, — C,, sin X
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and

Xy = Xy +ka/2 97)

Finally, gravity gradient observations on board a spacecraft may be carried out, solely or
in combination with other measurements. For completeness, we just recall below the expressions
of the diagonal terms of the gravity gradient tensor in the local orbital frame, still in the case of a

quasi-circular orbit :

T (1+1)(1+2)

uu R I_

T, [=n" > (—) Fiooys | (1 1+K) |7 (98)
r mixlzl 8 k2= (1+1)°

Equations (88) and their time derivatives, and equations (93), (95) and (98) allow to perform
sensitivity analysis of all the observation systems considered in modern satellite projects aimed at

mapping the Earth’s gravity field, such as those discussed in tutorial # 5.

S5e REFERENCES

Balmino, G., 1978, Quelques problémes de rotation dans I’espace. Applications en géodésie, en
dynamique des solides et en planétologie. Technical Report, GB/NS/R.7911/CT/GRGS.
Balmino, G., 1993, Orbit Choice and the Theory of Radial Orbit Error for Altimetry, Lecture

Notes in Earth Sciences, R. Rummel and F. Sans6 Ed., Springer-Verlag, pp. 243-315.

Balmino, G. and Perosanz F., 1995, Comparison of geopotential recovery capabilities of some
future satellite missions, in Proceedings, Int. Symp. Gravity and Geoid, Graz, 1994, pp. 403-
412.

Engelis, T., 1987, Radial Orbit Error Reduction and Sea Surface Topography Determination
using Satellite Altimetry, Report 377, Dept. of Geodetic Science and Surveying, the Ohio
State University.

Kaula, W.M., 1966, Theory of Satellite Geodesy, Blaisdell Pub. Co.

Rapp, R.H., Wang Y.M., and N.K. Pavlis, 1991, The Ohio State 1991 Geopotential and Sea
Surface Topography Harmonic Coefficient Models, O.S.U., Rep. 410.

Rosborough, G.W., 1986, Satellite Orbit Perturbations due to the Geopotential Rep., CSR-86-1,

Austin, Texas.

63



Schrama, E.J.O., 1989, The Role of Orbit Errors in Processing Satellite Altimeter Data,
Publication n°33, Neth. Geodetic Comm..

Schwintzer, P., Ch. Reigber, A. Bode, Z. Kang, S.Y. Zhu, F.-H. Massmann, J.C. Raimondo, R.
Biancale, G. Balmino, J.-M. Lemoine, B. Moynot, J.-C. Marty, F. Barlier, Y. Boudon, 1997,
Long-wavelength global gravity field models : GRIM4-S4, GRIM4-C4, Journal of Geodesy,
71, pp. 189-208.

Wagner, C.A., 1985, Radial Variations of a Satellite Orbit due to Gravitational Errors :
Implications for Satellite Altimetry, J.G.R., Vol. 90, n°B4, pp. 3027-3036.

64



65



